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Abstract

Wilson loop of SU(N) Yang–Mills theory is evaluated in the Fock–Schwinger

gauge at the confined phase. The latter is characterized by presence of the

singlet projector of the group of gauge transformations at infinity in any

correlation function. Obtained values of the string tension and critical temperature

are in agreement with lattice data.

Wilson loop [1] is being serving as confinement criterion for decades in
investigations of nonabelian gauge theories. Its application was especially successful
in the case of lattice simulations [2]. The approach I would like to suggest in
the present report is however somewhat different from those earlier used. Our
calculation relies heavily on the fact that the system is indeed in the confined
phase. Namely we keep singlet projector throughout derivation. So confinement
in this algebraic sense is supposed to be already proved by other means.

In the recent papers by the author in collaboration with N. A. Sveshnikov
[3, 4, 5] it was demonstrated how singlet projector Ps arises inside any localized
variables’ Gibbs mean value. This projector of the group of gauge transformations
at infinity G∞ = G/Gp provides adequate comprehension of confinement phenomenon
from purely theoretical point of view. Therefore one may ask the following
reasonable question. Does this projector lead to the area law in the Wilson
loop? The answer turns out positive as it will be seen later on.

We prefer to work in 3-dimensional Fock–Schwinger (FS) gauge [6-8]

xA(t,x) = 0 . (1)

Let us consider the Wilson loop

W [Γ] = 〈TrP exp(g

∮

Γ

Aµdx
µ)〉, Aµ = Aa

µt
a, (ta)† = −ta , (2)

that is a gauge–invariant order parameter. It is necessary to relate it with the
physical variables of the FS gauge to begin with. The zero component A0 appears
in the first order formalism as a Lagrange multiplier

L = ȦE− 1

2
((E)2 + (B)2) +A0∇E . (3)



2

This variable is determined from the equation of motion

Ea
k = ∂0A

a
k − ∂kA

a
0 + gtabcAb

kA
c
0 (4)

while the task on conditional extremum is formulated. From the (4) we get after
multiplication by x̂k

A0(t,x) = −
∫ x

z

dy E‖(t, yx̂) . (5)

The lowest integral limit z is an arbitrary point, nevertheless such ambiguity
disappears in the integral over closed circuit.

The most suitable contour Γ consists of two straight lines along radius under
x̂ direction at times t = 0, L, which are actually vanishing in virtue of gauge
condition (1), and of two lines parallel to the time axis at radii x = R′, R′′.
Hence there leaves from ( 2 ) just the contribution

∮

Γ

Aµdx
µ =

∫ L

0

dt (A0(t, R
′
x̂)−A0(t, R

′′
x̂) ) = −

∫ L

0

dt

∫ R′′

R′

dxE‖(t,x) . (6)

To perform Gibbs averaging some more elaborated technique is needed. In
[3, 5] there was proposed the method of the effective action denoted as W
that is depending on collective variables λ, ν. One may connect the generating
functionals of longitudinal strengths

Z[ζ, η] =

∫

↔
DA⊥ DE⊥ exp (−)

∫

Ω

dx [EȦ− 1

2
E

2
FS+

1

2
B

2
FS+i ζE‖−ηB‖ ] (7)

and of collective fields (λ = −∂xσ)

Z[ζ, η] =

∫

↔
D λ D ν exp [−W [λ, η]− i (λ ζ + η ν ) ] (8)

via the relation

Z[ζ, η] = exp [
1

2

∫

Ω

dx ( ζ2 + η2 ) ] Z[ζ, η] . (9)

Let F (E‖, B‖) be an arbitrary functional of its arguments. Then its average

〈F (E‖, B‖) 〉 = Z−1[ζ, η]F ( i
δ

δ ζ
,

δ

δ η
) Z[ζ, η]

∣
∣
∣
∣
ζ=η=0

(10)

is expressed through the 〈F (λ, ν)〉 of Z[ζ, η] ’s by means of the formula

〈F (E‖ , B‖ ) 〉 =
∫

↔ D ξ D θ exp (− 1
2

∫

Ω
dx [ ξ2 + θ2 ] )

〈F (λ+ i ξ , −i ν + θ ) 〉 . (11)

Here integrations must be carried out over fields from L2-space. This relation
lies in a heart of collective variables interpretation. They ought be imagined
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as longitudinal (chromo) electric and magnetic fields smoothed by a Gaussian
noise.

Combining previous results we infer the basic formula

W [Γ] =

∫

↔
DξDσDν e

−W [σ,ν]− 1
2

∫

Ω
dx ξ2

tr T exp

(

ig

∫ L

0

dt

∫ R′′

R′

dx [λ+i ξ](t,x)

)

.

(12)
Time was converted into Euclidean (L ≤ β). Dyson T exp stands because
coefficients fields depend upon time. Trace with an upper–case letter means
a trace of operators in the Hilbert space not commuting at different instants. A
lower–case trace in ( 12 ) is a Lie–algebra fundamental representation one.

Confined phase is characterized by insertion of singlet projector Ps of the
group of gauge transformations at infinity G∞ into observables’ Gibbs averages

〈F · · ·G〉conf = 〈PsF · · ·G〉. (13)

We should take this operator, which acts in the Hilbert space accepting a
unitary representation of G∞, into consideration when the auxiliary variable
λ is introduced. It is important to stress that the integral over group can
not be permuted with path integration. This ensues from noncommutativity
of generators Qa with different indices. Therefore we may evaluate the group
integral in the end of calculations or include the projector as Ps ∝ δ[Q] ≡
∏

x̂,a δ[Q
a(x̂)] via appropriate delta–function inside path integral. The second

possibility is a more suitable here

Z =

∫

↔
DA⊥ DE⊥ e−W [A,E] δ[Q] =

∫

↔
DλDA⊥ DE⊥ e

1
2

∫

Ω
dx (E2

⊥−B2)

e

∫

Ω
dx [− 1

2λ
2+λE‖] δ[Q] . (14)

To be self–consistent we present our path integral in terms of product of usual
integrals over Fourier–modes of the complete and orthonormal basis formed by
the spherical waves

fk(x) =

(
2

π

)1/2
sin kx

kx
(15)

multiplied by spherical functions Ylm. Introducing new variable ϕ related with
λ via

λ =
1

x2

∫ x

0

y2 dy ϕ(yx̂) . (16)

we express the integral of interest in the following manner

I =

∫
∏

n,lm

dϕ̃n,lm(k) e

∑

n,lm

∫
∞

0
dk [− 1

2 | ϕ̃ |2n,lm(k)+Φ̃∗
n,lm(k) ϕ̃n,lm(k) ]

. (17)

The confinement requirement implies then

Φ̃n,lm(k) |k=0 = 0 , (18)
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that is equivalent up a normalization constant to taking integration over fields
obeying ϕ̃n,lm(k = 0) = 0. The latter leads us to further simplifications.

Parameters R′, R′′ are at our disposal. We can choose them to simplify
evaluation a great deal. Namely let us arrange the limit of the kind R′, R′′ →
∞, R′′ −R′ ≡ ∆R = const. In ( 12 ), the integral

∫ R′′

R′

dxλn, lm(x) → − ∆R

R′R′′ 2
3/2π1/2 ϕ̃n, lm(0) = 0 (19)

tends to zero. So far we have to take just a simple integral over the auxiliary
field ξ. For this purpose we first of all make the following remarks.

The generators of SU(N) fundamental representation are N dimensional
matrices satisfying the conditions

tr(λa λb) = 2 δab , trλa = 0 . (20)

Coordinate frame would be conveniently to choose so that the matrices of
(N − 1) commuting generators will be represented by diagonal matrices {λα

kk ≡
λ
(α)
k , (α = 1, . . . , N − 1)}. Implementing gauge rotations all but (N − 1) of ξ’s

components in respect to these generators might be made zero:

ξ =

N−1∑

α=1

ξα
λα

2 i
. (21)

The characteristic condition (20) regains formally in terms of ~λ(α) N - dimensional
vectors after introduction of the vector

λ(0) =
1√
N

(
1, . . . , 1
︸ ︷︷ ︸

N

)
, (22)

as a requirement that the set

{

λ(0), λ(α)/
√
2

}

is an orthonormal frame in

N -dimensional vector space. The completeness of such basis presupposes unit
decomposition

N−1∑

α=1

λ
(α)
i λ

(α)
j = 2

(

δij − λ
(0)
i λ

(0)
j

)

. (23)

These obvious remarks being done let us return to evaluation of our integral.
One can prove that any normalized vector ξ̂(t) may be rotated to make it time–
independent. Since then on the T-exponential becomes a usual one

J =

∫

↔
D~ξ e−

1
2

∫
d4x ~ξ 2

tr exp

(

−g

∫ L

0

dt

∫ R′′

R′

dx ξ(t, xx̂)

)

. (24)

Provided special basis (21) choice the factorization of multiples takes place

J =

∫

↔

N−1∏

α=1

Dξα e−
1
2

∫
d4x (ξα)2

N∑

i=1

exp

[
N−1∑

α=1

(j • ξα)λ(α)
i

]

, (25)
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j(x) =
i g

2
θ(0 ≤ t ≤ L)

θ(R′ ≤ x ≤ R′′)

x2
δ(x̂− x̂

′) (26)

giving rise to the result

J =

N∑

i=1

exp

[

−
N−1∑

α=1

(λ
(α)
i )2 χ0 S

]

(27)

and consequently,

WSU(N) = N exp
(
−χ

SU(N)
S
)
, S = L (R′′ −R′) (28)

with the string tension

χ
SU(N)

= 2

(

1− 1

N

)

χ0 . (29)

We have taken into account formula (23) for the sum inside the exponential.
This expression is nothing but the long–awaited area law with the SU(2) string
tension

χ0 = lim
R′,R′′→π δ(0)

g2 δ(0̂)

8R′R′′ . (30)

Surely, the accurate definition of this limit needs some care. Both radii in a
self–consistent derivation should be tended to the space infinity related with a
more familiar infinity like δ(0) by

δ(0) = lim
R→∞

∫ R

−R

dx

2π
. (31)

There are two proper way of understanding such infinities. First, everything
being cut–offed and kept finite till the final result, as it conventionally was
done, has no problems to cope with. Next, infinite objects above arise naturally
enough in nonstandard analysis [9]. Fortunately, we mustn’t deepen in those
dark mathematical areas since the construction (30) has been already familiar
for us if reliable formula (31) is borne in mind. Comparison with critical temperature
of [10-14] leads to the relation

χ0 =
π2 T 2

c

ac
, ac ≈ 2.61882 . . . (32)

For the dimensionless ratio ξ ≡ Tc√
χ we predict in the case of SU(3) group

the value

ξ
SU(3)

=
3

2
√
2π

√
ac ≈ 0.55 , (33)

whereas the lattice datum [10-14] is 0.58± 0.04. Another data are summarized
in Table.

The visual picture of colour confinement following from the (13) is that
for any physical state contributing to the thermal average the flow of colour to
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relat. lattice theoretical

T
SU(3)
c

T
SU(2)
c

1.16 ± 0.07
√

3/2 ≃ 1.22

ξSU(3)

ξSU(2) 1.04 ± 0.18 3/(2
√
2) ≃ 1.06

Tab. 1: Comparison of our theoretical predictions with lattice data.

infinity equals to zero in every direction. Hence the coloured particles could not
leak to spatial infinity and may no be observed.

Another possible insight on confinement is provided by Wilson loop. The
matter of the present paper was to show how the first picture leads to the latter
one. The results are not only positive but have also fair agreement with data of
the lattice simulations [10-14].

We have unexpectedly disclosed that the combination of divergences constituting
the only parameter of the gluodynamics effective potential possesses a direct
physical sense. Such quantity is related with the string tension in the area law.

It is worthy to emphasize that the derivation of the area law was itself exact.
The singletness under G∞’s action has not been proved rigorously of course,
though being taken for granted allows one to get such strong an assertion. The
ratio ξ is known approximately as it depends on the critical temperature.

Results presented so far need a more accurate procedure of ultraviolet regularization,
which is rather unclear in the noncovariant FS gauge. It is a good luck that the
final expression for the ratio ξ is free of such problems. Let us make also some
remarks about infrared regularization. Use of objects like δ(0) is not at any rate
worse than use of Dirac delta function itself. Recently the procedure of space
cut–off was carried out rigorously for Wilson loop and free energy density. The
Dirichlet boundary condition imposed on the 3-d sphere allows to get the same
results which are just the finite–volume repetition of our present formulae.

I am grateful to N. A. Sveshnikov and E. E. Boos for helpful discussions.
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