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Abstract 

We seek to provide a general strategy to permit the study of non-equilibrium aspects of con- 
formational transitions in various types of heteropolymers. The theoretical methods we have 
developed rely mainly on the Gaussian self-consistent approach that replaces the exact non- 
linear Langevin equation by a linear stochastic ensemble with unknown time-dependent param- 
eters determined in a self-consistent way. We discuss possible applications of the method to 
conformational transitions of biopolymers such as DNA and protein folding. 
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1. Introduction 

There are numerous problems involving dynamics and kinetics of  conformational 
transitions of  polymers that are of  considerable scientific interest [ 1-4]. However, the 

lack of good general methods to study non-equilibrium problems of this type has been 
a limitation. This is a considerable contrast to the case of  non-equilibrium statistical 

mechanics where the order parameter is related to a density [5]. In our case not only 
the density, but the fractal dimension may also change with time. Whilst computer 
simulation is undoubtedly quite successful in this arena [6, 7] it is important to be 
able to understand and interpret the results. For this reason we have taken steps to 
write down a general approach to the study of non-equilibrium phenomena where the 
fractal dimension may change. The general philosophy of our treatment is that, given 
the intractability of  the full Langevin equation for the polymer, we should attempt to 
replace the exact equation with another "trial" dynamics which is exactly solvable. If  
we keep sufficient flexibility in this trial dynamics then all of the adjustable parameters 
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may be varied to ensure that the trial and exact dynamics match each other as well as 

possible. 
Finally, let us point out that apart from the intrinsic interest in the heteropolymer 

problem there has long been an underlying belief that such studies would lead us 
closer to an understanding of the phenomena of biopolymer folding or compaction as 
observed in proteins, DNA and other molecules. It is widely accepted that amongst the 
essential features required in a biopolymer model is the presence of "frustration" due 
to a combination of monomer units with some type of opposing tendency to associate 
or repel each other, along with some connectivity constraint. 

2. Method 

The phenomena we study are well described by the Langevin equation 

, t' ~H ~, "~ 
~n~(t) = Z ~ n ~  ~, [x(t)] [ -  $2~S, + rln,(t ) j  . (1) 

~',n' k, ~3x n, 

Hydrodynamic effects are incorporated via ~n~, ', the Oseen hydrodynamic interaction 
tensor. The noise is assumed to have zero mean value and a second-order correlation 
function of the form 

rln,(t )) = ~.o,,, Inn' (~l~(t) ~' ' t ~ - l ~ ' 2 k B T f ( t - t ' )  (2) 

The Hamiltonian H = Ho + Hexct.v. includes the spring and bending terms 

kBT 2 
H ° = 2 K  E (Xn -- Xn-1 )2 ..]_ 7 Z (Xm+l ~- Xm--1 -- 2Xm)2 , (3) 

n m 

where summation is performed only over the beads connected by springs with spring 
constant ~c = 3kBT/l 2, l being the bond length and 2/l  the stiffness parameter [1,8,9]. 
The interaction part, Hexcl.v , we present in the form of the virial expansion 

cxz oo N--l 

Hexcl.v. = EHN = E U N  E I ' I  (~(Xm' - Xmi+l)' (4) 
N=2 N--2 mt-.mN i=t 

where UN are virial coefficients and ml # mi+l. 
The present approach involves introduction of a time-dependent effective potential 

via the Gaussian stochastic ensemble for the Fourier modes, 

~q(t)JCq(t) = - A  Vq(t)Xq -t- rlq(t),  (5) 

' ' 

qq, (t )) = ~q(t) 2 k s T  6(t  - t ' )6~ ,  6_qqt (6) 

Here, A Vq(t) and ~q(t) are, respectively, a time-dependent potential and friction that 
can be determined self-consistently. 
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The equations we give can then be used to follow the progress of the observables 
as the system passes to its new conformational state. Our main objects of study are 
the correlation functions, 

~q( t )  = ½(IXq(t)[2), ~q(t)  = l ( X _ q ( O ) X q ( t ) )  . (7) 

We assume space-isotropic initial conditions and consequently all spatial components 
give equal contributions. Note that the squared radius of gyration is simply R 2 = 
~q¢0 ~q" In terms of the time-dependent potential one can find the non-equilibrium 
equations of motion [10], 

(q-(2t) ~q ( t )  = k s T  - A Vq( t )~q( t ) ,  (8) 

~q( t )(~q( t ) = - A Vq( t )f~q( t ) . (9) 

Let us introduce the following coefficients: 

c(q) fn(q ) fn(q), d(q) n (q) (-q) nn' = -- nn',mm' = KeCnn' Cram' (10) 

and the correlation functions 

1 ~ ' ~  d(q) Dnn',mm' = $ ((Xn - Xn')(Xm --  Xm')) : ~ q  (1 1 ) ~ . d  ~nnt* mint 
q 

Here f(n q) = exp(i2rcqn/N) are the coefficients of the Fourier transform of a ring poly- 
mer. We shall also use the standard conventions [11] for reduction of the four-index 
coefficients to the two-index ones. Without hydrodynamics (q ~ ~ -~-g(b is simply a con- 
stant. The self-consistent potential is related to the equal time correlation function by 
the following equation: 

1 / dHexcl.v. \ 
AVqq~q = kq~q -~- ~ ~ X _ q ( t ) ~  / . (12) 

The effective potential may be written [11] as the derivative of the ensemble mean 
energy 8 = (H), 

2 t?8(t) (13) 
AVq(t) - 3 O~q(t)  

Now, recalling the expression for the entropy ~9 ° in the Gibbs-Bogoliubov estimate at 
equilibrium, 

3 
= ~ks  ~-'~ log~q,  (14) 

q 

one may rewrite Eq. (8) via the derivatives of the "instantaneous" free energy ~¢(t) = 
8 -  T 6 e. For this, let us first introduce the real positive variable Xq defined as the 
square root of the positive-definite quantity, 

~q(t) = 1X~. (15) 
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It is also instructive to use the N-dimensional vector notation X = {Xq}, and introduce 
the diagonal friction matrix ~qq, = ~q~qq,. Then we shall have 

d t3d(t)  (16) 
• X ( t )  - -  O X ( t )  ' 

where the dot designates the scalar product. 
The form in Eq. (16) is useful for understanding the kinetics of a homopolymer as 

the evolution in the phase space of the dynamical variables X against the gradient of the 
free energy, i.e. in the direction of its deepest descent. Thus, at equilibrium the system 
is in the absolute minimum. After the quench it happens to be at a non-stationary point 
and starts moving towards the new absolute minimum of the free energy. 

The rate of kinetics could be described by the time derivative of the free energy as 
well as the modulus of its gradient. Indeed, it is simple to calculate the time derivative 
of the free energy from Eq. (16): 

d &4  . ~-1 . 8 d  
~ s e ( t )  = 8 x  8 x  " (17)  

The ensemble averaged energy is given by [10] 

E _ 3 k B T  N ( ) ~ ( q ) )  oo 
2 l 2 ~ d(q) 1 --~ Z ~tL " - -  "Ol 7d;l o~q + Z (det A(L-1))-3/2 (18) 

q L=2 ml...mL 

In this formula A ( c - 1 )  is a matrix of the size L -  1 with the matrix elements 

(L-I) 
Aij = Omlm,<,mlmj < (19)  

and fiL = UL/(27Z) 3(L-1)/2.  

3. Flexible homopolymer 

We found [ 10-12] that for a flexible homopolymer there are four characteristic stages 
in the kinetics from the Flory coil to the conventional collapsed state. The stages are 
as follows: 

(a) At early stages we find a sort of spinodal decomposition where many of the 
internal modes of the polymer coil become unstable. Initially, the chain undergoes 
formation of small locally collapsed globules that grow for some time at the expense of 
their neighbours in the chain. This process leads to an essential decrease of amplitudes 
of large-q modes, these describing the local structure of the chain. There is also a much 
slower decrease of low-q modes, describing the polymer at large distances along the 
chain. The squared radius of gyration first decreases according to the power law [10] 

R2g(t) = R ~ ( O )  - A l t  ~ , (20) 

where ~i = 7 (cq = 9 )  without (with) hydrodynamic interaction. At the end of this 
stage most of the slack polymer has been gathered up into small more condensed 
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clusters with relatively tight chain between them. The effective Flory exponent has 
risen to be unity, characterizing a rigid rod of clusters, and thereafter begins to fall 
rapidly until it reaches a near-ideal Gaussian value. 

(b) The second stage involves cluster coarsening, the analogue of Lifshitz-Slyozov 
cluster growth after a quench into the liquid-gas coexistence region. However, we 
emphasize that this chain of clusters is essentially an ideal coil at long lengths with a set 
of topologically connected locally collapsed clusters. The evidence is that the average 
effective swelling exponent during this stage corresponds to an ideal coil VT = 1, and 
we therefore have a set of clusters growing against the tension of an ideal coil elasticity. 
The characteristic time expected from elementary arguments is 

"gin = A N  :& ( T  m = A ' N  3vr ) (21) 

for the model without (with) hydrodynamic interaction. Thus, we get the cluster growth 
law without hydrodynamics, 

S( t )  = ast  z, Z - 1 (22) 

The latter prediction is in agreement with the result obtained by de Gennes in his 
seminal work on the collapse kinetics [13]. These are then the fundamental laws of 
collapse throughout the predominant stage of kinetics, for beyond this stage the polymer 
coil is space-filling, though not yet compacted. 

(c) The next stage corresponds to shape optimization and further compaction of the 
globule to a higher density. Here the mean squared radius of gyration tends exponen- 
tially slowly to the final equilibrium value, 

R2o(t) = R~(oo) + A f  e x p ( - t / z f ) .  (23) 

The relaxation time scales in the degree of polymerization rf ~ N ~ in the following 
i is the way [11]: 7f = 2vc + 1 (Tf -- 3vc) without (with) hydrodynamics, where vc = 

collapsed swelling exponent. 
(d) Due to topological restrictions the late state of kinetics for a non-phantom chain 

will have a different structure than for a phantom one. For an open polymer topological 
restrictions may be removed via self-reptations of the chain, and it has been argued that 
this leads to an even longer final kinetic stage with the time scale Treptations ~ ' ~  N 3 [14]. 

4. Stiff homopolymer 

Our initial probes of the model [15] revealed a sort of slowing-down in kinetics of 
a stiff chain in agreement with Ref. [16]. In that work the model of the freely rotating 
chain has been adopted for studying the contraction kinetics of a moderatively stiff 
and relatively thick chain. It was noted that the slowing-down is related to the higher 
degree of cooperativity required for a rigid chain to rearrange itself during contraction. 
Although this is partially true, no explicit mechanism of this phenomenon has been 
given. It is also unclear whether the observed effect occurred due to the stiffness or 
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really due to the thickness, phenomenologically described by the two-body screened 

interaction term. 
Naturally, it was interesting to check whether the same behavior is reproduced in 

the present model of rigidity. We have checked that and found a quite similar picture 
for the given parameters of the Hamiltonian. Quite surprisingly though, the effect has 
completely disappeared for the same stiffness by switching off the thickness parameter. 
Only for rather higher stiffness it was possible again to recover a sort of the slowing- 
down. 

In addition, we should note here that we have earlier observed such kinetic phe- 
nomenon in our study of copolymers [17] and only now are the connections becoming 
clear to us. Further surprises consisted in that it was possible for the same rigidity to 
produce one, two or no slow regimes in kinetics by changing the quench depth. By 
studying the heat capacity, bending energy and the correlations of monomer positions 
along the chain, Din, it has become evident to us that for high rigidity parameter the 
system may undergo a transition to a new toroidal phase, and also that the kinet- 
ics depends crucially on how close one is to the spinodals associated with first-order 
transitions. 

There is a significant amount of theoretical [18] and experimental [19] literature 
dealing with various questions about equilibrium properties of rigid chains, the most 
important practical example of which is DNA. Experimentally, it is well known that 
DNA can acquire a torus-like shape in its globular state, and that condensation of DNA 
induced by various agents could lead to even more complicated phases [19]. In theory 
the torus shape has been predicted in Ref. [20]. The physical reason for a torus is clear 
- a persistent chain has no desire to bend, so it tends to have as large a radius of 
curvature as possible, consistent with quite close packing of the chain. Nevertheless, 
to construct a good qualitative theory of such states is not very simple [18]. 

In Fig. 1 we present the phase diagram of the model in variables of the stiffness, 2, 
and the second virial coefficient, u2. The coil phase corresponds to extended conforma- 
tions of the polymer with a large radius of gyration scaling as Rg ~ N ~,,'', where the 
exponent Vcoit is close to the Flory value v F = 3 for a flexible chain, becomes a rigid 
rod exponent Vrod = 1 for a very stiff chain, with a cross-over in between. A new 
feature here, in comparison to the case of a flexible homopolymer, is that there are 
two compact states of the system: the spherical globule, which is just a conventional 
globule, and the torus-like globule. 

Curve I in Fig. 1 denotes the ordinary coil-to-globule transition for a comparatively 
flexible chain. This is a continuous (second-order) transition. If the stiffness is greater 
than some critical value the collapse transition (curve II in Fig. 1) becomes discontin- 
uous (first-order transition). The discontinuity of the coil-to-torus transition is natural 
since it is accompanied by a change in the spatial symmetry. It turns out that for 
larger lu21 the system can undergo a torus-to-spherical globule discontinuous transi- 
tion (curve III in Fig. 1) restoring the spatial isotropy of the globule. Note that all 
curves I-III intersect at a bicritical point A. Evidently, the transition III occurs when 
the two-body attraction exceeds the bending elasticity contribution. 
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Fig. 1. The phase diagram of a stiff homopolymer m variables of the stiffness parameter 2 and the second 
virial coefficient u2. Curve I corresponds to the second-order phase transition and curves II, III to the 
first-order transitions. Point A is a bicritical point. Curves II', II" and III', III" are spinodals. This diagram 
has been obtained from the data for polymer with the degree of  polymerization N = 100. 

Let us consider now the kinetics for a similar quench at a relatively small stiffness 
2 < 2c, where the equilibrium collapse transition (curve I in Fig. 1) is still second- 
order. The kinetics remains qualitatively the same, but it takes longer and the spinodal 
decomposition effect becomes weaker with increasing stiffness. The time-scale of the 
middle stage Zm may be estimated as 

Zm( ~ ) ~'~ ~.flex _.}_ a 2124-0"1 N 1"3+0"2 
- m  (24) 

Since the kinetics in Eq. (16) is simply the motion against the free energy gradient, 
in Fig. 2 we schematically illustrate the free energy profiles for different values of u2. 
Let us emphasize here that the torus minimum lies farther from the initial coil minimum 
than the spherical globule one. To explain this property one may argue that the spherical 
globule minimum may be obtained by a continuous deformation of the coil minimum, 
what corresponds to the second-order of the coil-to-spherical globule transition (curve I 
in the phase diagram), whereas the torus is a topologically different conformation and 
may be obtained from the coil by a first-order transition (curve II). 

Thus, we start at the point A in Fig. 2, which is the unique free energy minimum 
for the coil. After an instantaneous quench the initial profile is transformed and the 
system happens to be in a point along the arrow A-E. The resulting kinetics depends 
on the free energy profile for appropriate final value of u2. 

The situation changes dramatically after the bicritical point 2c. In Fig. 3 the time 
evolution of the mean energy for quenches with different final second virial coefficients 
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Fig. 2. Schematical profiles of  the free energy ~ parametrized by the dynamical variables X for different 
values of the second virial coefficient u2. The system is quenched from the point A (which corresponds to 
the global free energy minimum for the extended coil) along the arrow to points: B (quench to the torus 
state), C (the same with a kinetic slowing down), D (quench to the metastable spherical globule state), and 
E (quench to the stable spherical globule state). 
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Fig. 3. Time evolution of the mean energy d~ for N = 100, 2 = 15 for different quenches from the coil state 
u~ = 15 (from top to bottom): (diamonds) u2 = - 1 2  (quench inside the coil state), (pluses) u2 =- - 1 8  
(quench to the torus state just beyond the spinodal II"), (quadrangles) u2 = - 2 0  (quench deep to the torus 
state), (crosses) u2 = -25.6  (quench to the torus state just above the spinodal III') and (triangles) u2 = - 2 6  
(quench to the metastable region between the curves III' and III"). Here the solid line is drawn rescaled: 
500 + 6r/2 for convenience. 
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are depicted. One observation is that the kinetics of a stiff polymer is considerably 
longer than of a flexible polymer (solid curve). Another observation from Fig. 3 is 
that the kinetic process has several slow and fast regimes. Their duration and even 
number depends strongly on the quench depth. 

The characteristic kinetic time on approaching a spinodal line from within the stable 
region diverges as a power law 

~ lu2  - u ~ l  - ~ s  , (25) 

and kinetics is trapped once one has entered a metastable region. We have extracted 
the following critical exponents: t~ IIt-t = 3, t~iii~_ = t~llI~ = 1) describing the slowing 

down near different spinodal lines in Fig. 1 that separate regions of metastability. 

5. Random copolymer 

For the sequence model [21-23] the interaction potential H = / q  +/-)  consists of 
the homopolymeric/-) and the disordered H parts respectively, 

L--I  
K 

/1 = } ~ (Xn+l- Xn) 2 + ~ fit ~ H 6(Xmi - Xmi+,), (26) 
n L > 2  {m) i=1 

1 
171 = ~ ~ ( h m ,  + Amz)3(Xm, -- Xm2), (27) 

m,m2 

where Am are independent random variables on a half-period with the Gaussian distri- 
bution of disorder, 

1 ( A 2 ) 
x _ - - m  (28) 

P({A}) = I I  (2nA2)1/2 e p 2A 2 . 
m 

The Fourier transforms {2} are also independent random Gaussian variables with zero 
mean value and dispersion A 2, 

~q2qt = ,~2 ~q+q',O, z~ 2 -- AE/N. (29) 

Henceforth, we use the brackets (.4) to denote the statistical averages over the noise 
and initial ensemble of monomer positions {x(t = 0)} and the bar A to denote averages 
over the quenched distribution of disorder {A}. 

Apart from the observable ~q = (Ixlq2) this system requires for its description the 
additional variable defined by 

qgqp(t) ---- ~)qp(t), ~ q p ( t )  = 1}~q-p (X_q( t )Xp( t ) )  . (30) 
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The kinetic equations for this model may be written in terms of the derivatives of 
the free energy ~4 with respect to the dynamical variables as follows [24]: 

~ d a ~  2 (  ~3ag Oag)  (31) 
"2 Z J'q(t) = --'3 ~q-~qq ÷ Z (pqp a~q----~p ' 

P 

~ q ~ q p ( t ) = 2 (  (~3~q ~p~p) ~ q p )  - ~  ~Oqp + + A 2 ( 4 + ~ p  ) a d  . (32) 

This form of the kinetic equations has a transparent meaning. Indeed, the folding 
kinetics could be understood as a motion on the surface of the free energy parametrized 
by dynamical variables O~q, q~qp. The motion is determined by gradients and is directed 
towards the global energy minimum. Here the free energy landscape determining the 
kinetics represents the flow of the whole statistical ensemble. 

The free energy ag[Vq, Uqp] = o ~ -- T 5: contains the "entropic" part 

2 
5 e = k 3 k 3 A - 2  ~Oqp + O(~4), (33) 

q qp 

and the mean energy 8 = (H), 

_ _  I 1 

(H) _ 3~ 9ol + fi2 E ~ + ~13 ~--~ Yo(kl,k2)3/2 
N 2 k ~k k~k2 

3 i ~ - 2  Z ~  + fi2 15 Z P*'* 
~7/2 

k ~k 8 k k 

^ 15 r 2 ( k l , k 2 )  ^ 3 Y 3 ( k l , k 2 )  
÷U3--8- E k2)7/2 U 3 2 Z  Yo(kl, Yo(kl, k2)5/2 " kt k2 k~ k2 

Here we have used the following set of definitions: 

Yo( kl , k2 ) = 9k, ~k: 9 2 
- -  kl k2 ' 

Y2(kl, k2 ) 2 9~,Pk:,k: + 9~2Pk, k, 2 = , + 49~,k2Pk, k2,k~k2 

+ 29k, gk2Pk,,k: -- 49k, k2(gk2Pk~,k~k2 + 9k, Pk2,k, k2) 

Y3(kl, k2) = Pk, , k  2 - -  Pk, k2.k, k2 , 

q,P 

We have also denoted 

(34) 

(35) 

(36) 

(37) 

p k ( S )  ~ d(p, p+s) = ~ k ~Op, p+s , 
P 

Pk,,k2 : X - 2  Z P(:I) P(') : Dk, ~2 
S 

(38) 

(39) 
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with the coefficients 

dk(q,P) 1 [r/(q) A(P) _ d(kq-P)) . (40) = ~ k  + ~k 

Two important order parameters in this model are the glass parameter, which is 
related to the sample to sample fluctuation of the squared radius of gyration [25], 

g 2 e  2 ( c ) =  Z J - 2 T  2, T = Z q ) q q ,  (41) 

q~0 

and the phase separation parameter, 

7j = 1 
6N 2 Z (Am + Am' - 22o)Omm' , (42) 

ram t 

= Z q)qP" (43) 
q~ p,q, p~O 

1 For just two types of monomers "A" and "B" with equal concentrations nA = nB = 
the latter reduces simply to 7' = ~(Rg(B)I 2 _ R~(A)). 

In Fig. 4 we exhibit the time dependence of the phase separation order parameter 
7 j defined by Eq. (43) for different dispersions of disorder. This quantity is identically 
zero for a homopolymer and remains small for very weak disorder. For early times 
~(t)  rapidly grows reaching its maximum near the end of the spinodal stage. This 
reflects the formation of micro-phase structure of growing clusters, which tend to have 
hydrophilic exterior and hydrophobic core. During most of the coarsening stage 
changes only slightly. Indeed, the micro-domain structure of the coalescing globule 
has already been formed. It is represented by the original clusters, which essentially 
preserve their integrity within the macro-globule. If A is insufficiently large, the folding 
ends up after optimization of the relative positions of these subclusters and the surface 
area. However, for stronger disorder, A > Ar (upper curve), at some moment around 
z the system undergoes further and abrupt phase separation on larger scales. This 
phenomenon has an obvious similarity to that of the phase separation order parameter 
Z in periodic heteropolymers (see Ref. [17]). 

Now let us compare these observations with the behavior of the glass order parameter 

R 2 R~ Co) presented in Fig. 5. The latter can behave in a rather diverse manner depending 
on the value of A. We can distinguish at least four different regimes listed in order of 
increasing A and designated by the curves labelled below as in the figure: 

(A) this quantity is almost zero during the first stage, then grows during the second, 
but after reaching the maximum falls down to zero; 

(B), (C) similar to (A) first, but after reaching its maximum decreases slightly and 
remains at a high level, where it finally remains; 

(D) the same as above, but after the critical dispersion Ar it falls rapidly to a level 
very close to zero. Comparing this with the previous figure, we find that the critical 
dispersion is, in fact, the same for glassy and phase separation order parameters. 
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Fig. 4. Plots of the phase separation order parameter ~P versus time t for different values of the dispersion 
of  disorder (from bottom to top): A = 4, 16, 32, 38. Here and in the next figure the values of the parameters 
are the following: the degree of  polymerization N = 40, the third virial coefficient ~3 = 10, the initial and 
final second virial coefficient fi~i) = 15, 5~f) = - 2 5 ,  and the initial dispersion of disorder A (i) : =  0. 
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Fig. 5. Plots of  the sample to sample fluctuation of the squared radius of gyration Ro 2 Ro 2 <~'] versus time t. 
Lines ( A ) - ( D )  correspond, respectively, to the values of the dispersion of disorder A = 4, 16,32,38. 
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Thus, to resume, the system is strongly frustrated during the coarsening stage and 
forms a sort of glass. The frustration is induced by the hydrophilic shells of the subclus- 
ters and by the polymeric bonds. Thus, the system is kinetically arrested and possesses, 
as we shall see below, a long relaxation time due to the height of potential barrier. 
Existence of such glassy structure is clearly manifested in the glass order parameter 

RE R2 (c) Thus, Fig. 5 tells us that there are at least three different final phases of the 
Oi~O . 

system distinguished by the glass order parameter: for small d there is a liquid-like 
globule (LG), which is akin to an ordinary homopolymer globule with zero glass or- 

2 2 (c) ,  der parameter; glassy phase (G) with nonzero RoRg and for A > dr there is a 
folded phase (F) characterized by (almost) vanishing glass order parameter and a large 
phase separation order parameter. It is clear that the glassiness is destroyed by the final 
larger-scale phase separation. The globule acquires a more organized internal structure 

and becomes more compact. 
These observations are quite striking. In broad terms the states predicted here are 

close to those that have been discussed for real proteins [26]. 
The delay time near the transition line may be estimated with a good precision as a 

power law z ~-- A (A - Ar)-L For quenches to the folded state but close to the renatu- 
ration transition line the delay time analogously to the stiff chain diverges as a power 
law with the exponent approximately equal to y = ½ -+-0.04. This delay time z also 
grows with the degree of polymerization N since the prefactor scales as A ~ N 5/3+°'12. 

Moreover, the critical dispersion of this transition Ar increases significantly with N. 
Having discussed the kinetics of folding, let us turn our attention to the final state 

of kinetics, i.e. the equilibrium phase structure of the model. There we indeed observe 
the two-phase transitions discovered above. When the dispersion of disorder reaches 
the critical value A f,  which scales as a positive power of u3, the system undergoes 
the freezin9 transition accompanied by an abrupt increase of the glass order parameter. 
At this phase transition the phase separation order parameter changes quite regularly. 
In fact, ~ grows linearly until the second, renaturation transition, at dr, where it has 
a rapid jump, and then further grows linearly. Remarkably, the glass order parameter 
quickly drops to almost zero at the point At. 

The reason why we may conjecture this transition to be related to the renaturation 
becomes clear from Fig. 6. The homopolymer correlations of monomer positions (solid 
line), ~k, satisfy the following scaling law: ~k ~ k for Ikl < N2/3 and ~k "~ N2/3 

otherwise [11,27]. This law is preserved as one switches on the dispersion of disorder, 
and it is still fulfilled in the glassy phase (curve denoted by diamonds). Renaturation 
transition, however, leads to a striking modification of this law: ~k "~ const for any 
but very small k (curve denoted by pluses). Thus, the correlations of monomer coor- 
dinates do not depend on their chain indices after we have integrated over all possible 
complexions of disorder. They are equal to a universal constant entirely determined by 
the excluded volume interaction structure. 

Finally, let us discuss the mean squared radius of gyration R 2 versus the dispersion 
A drawn in Fig. 7. Generally speaking, the size of the polymer is almost independent 
of A in the LG phase, becomes larger in the glassy phase and is much smaller in the 
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Fig. 6. Plots of  the equilibrium correlations of  monomer coordinates @m versus the chain index m for 
polymer with the degree of  polymerization N = 40 and values of  the second and the third virial coefficients 
u2 = - 2 5  and u3 = 10: (solid line) A = 0 (homopolymer), (diamonds) A = 16 and (pluses) A 38. 
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Fig. 7. Plots of  the equilibrium mean squared radius of  gyration R~ versus the dispersion of  disorder A 
for different values of  the third virial coefficient (from bottom to top): ~3 5,10,20. The degree of  
polymerization and the second virial coefficient are N = 30 and ~2 = -25 .  
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F phase. Thus, the globule in the folded state is more compact than the homopolymer 
one and depends weakly on the dispersion of disorder. These properties conform to 
the intuitive idea that a glassy globule should be bigger since parts of the chain are 
frozen in not completely compacted locations, and that the native globule should be 
maximally compacted due to the best possible optimization of the volume interactions. 

In addition, the mean energy becomes smaller in the folded state as well. 

6. Conclusions 

We have spent some time discussing the details of the Gaussian self-consistent ap- 
proximation for dealing with conformational kinetic phenomena. We believe that it has 
many potential advantages because it is well defined, simple to apply, and has a known 
limiting behavior at equilibrium. However, we will now discuss the problems that one 
can expect to face in application of our ideas. The most serious is already clear from 
a study of the equilibrium equations, a matter that has been discussed with clarity in 
Ref. [3], as well as various references therein. Thus, if we set the time derivatives to 
zero we obtain an equation for the effective potential. This equation is precisely what 
one would obtain using a Gaussian variational calculation, and it is known that for the 
case of an infinite repulsive potential we find a Flory exponent that has too large a 
value. Nevertheless, the qualitative features of collapse and other transitions are well 
preserved and with some reasonable assumptions, but without mathematical control, we 
can recover the Flory exponents [28]. The point that we seek to make here is that the 
relations between exponents are all preserved. Our experience of the non-equilibrium 
method is fairly favourable also. We believe that relations between various quantities 
are well preserved in the non-equilibrium method we have presented, and results from 
various simulation studies and comparisons to previous works have helped confirm this 

[29,10,30]. 
Of course, fundamentally we deal with a phantom network. We note that this is not 

the same as a phantom chain, and the fact that there are effective springs connected 
between all pairs has the effect of restraining crossing. In any case, the method has 
been applied to problems with known kinetic laws, and good agreement has been 
found. The effect of non-phantomness has been studied in Monte Carlo simulation for 
a homopolymer in Ref. [14]. It is quite important in the dense globular state. For an 
open polymer topological restrictions may be removed via self-reptations of  the chain, 
and it has been argued that this leads to an even longer final kinetic stage with the time 
s c a l e  Zreptations ~ N 3. However, this is a delicate question that requires a separate study. 

In general, therefore, we believe that the method gives very good qualitative and in 
some cases quantitative predictions. One should note that this assessment is based on 
our experience with a particular class of problems and the intuitions based on these 
so, in time, later applications may lead to some revision of  these positive views. The 
final resolution to these questions must take a different direction. Thus, the Gaussian 
nature of  the trial distribution is its weakest aspect, and the basic philosophy of our 
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approach may be expected to have broader application than with this particular choice. 

A better choice of distribution than the Gaussian appears to be possible. There is real 
promise now that one can write out a theory that has the correct equilibrium limits and 
accurate Flory exponents [30]. However, this promise bring with it also the unfortunate 
aspect that methods for kinetics that go much beyond what we have discussed here 
are difficult to analyze except by extensive numerical study. It will be challenging to 
see what can be done to improve the situation [30]. 

On the broader issues of what may be expected from non-equilibrium studies of 
differing types of polymers, copolymers, and biopolymers, some matters are becoming 
clearer. In particular, it does now seem likely that in due course a reasonably com- 

plete understanding of the fundamental kinetic laws of these systems can be acquired 
along the lines we have discussed. Whether we will be able to make the intellectual 
connection to these approaches remains an open, but important, question which should 
be resolved in the not too distant future. 
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