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We present two coarse-grained models of different levels of detail for the description ofb-sheet
tapes obtained from equilibrium self-assembly of short rationally designed oligopeptides in solution.
Here we only consider the case of the homopolymer oligopeptides with the identical sidegroups
attached, in which the tapes have a helicoid surface with two equivalent sides. The influence of the
chirality parameter on the geometrical characteristics, namely the diameter, interstrand distance, and
pitch, of the tapes has been investigated. The two models are found to produce equivalent results
suggesting a considerable degree of universality in conformations of the tapes. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1866012g

I. INTRODUCTION

Structured proteins in their folded state possess a rich
variety of three-dimensional conformationsstertiary struc-
turesd which are usually classified in terms of the mutual
arrangements of the so-called motifs and elements of the
secondary structure.1 The secondary structures are usually
characterized as segments of the protein chain possessing a
strong regularity in the values of the Ramachandran
angles.2,3 The most common of such structures are the
a-helix and theb-sheet.

There is a general view that the microscopic chirality of
individual amino acids is responsible for the twisted shape of
b-sheets in globular and fibrous proteins.4 Apart from the flat
conformation described by Corey and Pauling,5 a b-strand
can acquire a nonzero degree of helicity with a finite twist
along the principal axis of the polypeptide chain. Further-
more, the helical structure of a single strand directly relates
to themacroscopictwisted shape of the wholeb-sheet.

Theb-sheet conformation has been recently exploited as
a reference structure for the novel biomaterials produced by
large-scale self-assembly of oligopeptides in solution.6–9 In
the latter references it has been shown that oligomeric pep-
tides can be rationally designed so that they self-assemble
unidirectionally in solution forming helically twistedb-sheet
tapes stabilized by a regular arrangement of hydrogen bonds.

The main factors which stabilize the tape structures are the
intermolecular hydrogen bonding between the polypeptide
backbones, cross-strand attractive forces between sidegroups
shydrogen bonding, electrostatic, and hydrophobicd, and lat-
eral recognitionssteric andp-p interactionsd between the
adjacentb-strands.

The tape structure is regarded as only the first in the
hierarchy of equilibrium structures observed with increasing
oligopeptide concentration such as the double tapes, fibrils,
fibers, and eventually nematic gels.6–9

This novel route towards engineering of biomaterials is
an alternative to some approaches which caused controversy
and provides a possibility for simple equilibrium control of
the biomaterials architecture, their functional and mechanical
properties, as well as the kinetics of their formation in re-
sponse to pH, temperature, and other triggers. Among differ-
ent applications of these biomaterials which could be envis-
aged one can mention their current use as three-dimensional
scaffolds for tissues growth.8,9 Moreover, these
oligopeptides-based assemblies serve as a simple experimen-
tal model system which could be used for providing valuable
insights into the self-assembly and aggregation mechanisms
of natural proteins and, in particular, formation of plaques of
b-amyloids10 and fibrous protein structures.

In terms of computer simulations, a number of molecular
dynamics studies of oligopeptide systems were reported
recently.8,11These works have explored thesmetadstability of
relatively small aggregates over fairly short computing times
accessible to simulations, thereby providing valuable struc-
tural information which is difficult to extract from the experi-
ment. Unfortunately, it is difficult to establish whether those
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structures were sufficiently well equilibrated over such short
run times and only several particular oligopeptide sequences
were considered.

At present, there is still no full understanding regarding
the details of the functional relationship between the chiral
nature of the singleb-strand and the helical geometry of the
b-tape. More generally, only in recent years the connection
between the molecular handedness and the morphology of
supramolecular assemblies was examined.12–14 Researchers
have found that chirality controls the shape of the macro-
scopic assemblies not only in natural and synthetic peptides
but also in other biological systems such as lipids, fatty ac-
ids, and nucleic acidsssee Ref. 12 for a review on models for
the formation of helical structures made up of chiral mol-
eculesd.

Recently, Nandi and Bagchi15–17have proposed a model
for the assembly of chiral amphiphilic molecules. The latter
is based on a simplified representation of either the geometry
or the potential energy, which is then minimized in order to
find the most efficient packing. Their results, which are con-
sistent with the experiment, show that chiral tetrahedral am-
phiphiles of the same handedness assemble at a finite angle
with respect to their neighbors, driving the formation process
of helical clusters. Inb-sheet tapes a similar behavior is
found, where the microscopic chirality arises from the in-
tramolecular interactions. The intermolecular forces then sta-
bilize the tape structure with a finite twist angle observed
between the neighboring strands. This twist angle transfers
the chirality from the single strands to the level of the me-
soscopic assembly, which hence possesses chirality as well.
This type of the secondary structure could be rationalized as
a compromise between theout-of-planeenergy term origi-
nated from the chirality of the single peptides and the inter-
molecularsmainly hydrogen bondingd energies of the back-
bones atoms, preferring a flat arrangement.

The main goal of this work is to achieve a fundamental
understanding of the way in which the microscopic chirality
of single peptide molecules manifests itself at a larger su-
pramolecular scale of the self-assembled tapes. In practice,
we would like to construct aminimal model capable of cap-
turing the most essential features of this phenomenon. For
this, we shall adopt a simplified coarse-grained description
for the rodlike oligopeptides with a nonzero degree of helic-
ity. Our computational study will be based on classical
Monte Carlo simulations in continuous space with the use of
the standard Metropolis algorithm18 much used in polymer
simulations.

To describe the intermolecular hydrogen bonding occur-
ring within two-dimensionalb-tapes we shall use a coarse-
grained description via a combination of the soft-core repul-
sion terms and short-ranged attractive terms. Furthermore,
the microscopic chirality is introduced via anad hoc qua-
dratic term. The functional dependence of the macroscopic
twist on the strength of the latter will then be analyzed. The
explicit forms for different potential energy terms, including
those describing the bonded interaction, and motivation for
their choice are detailed in the following section.

II. METHODS

A peptideb-sheet is a regular secondary structure char-
acterized by values of the Ramachandran angles lying within
the upper left quadrant of the Ramachandran plot.1 Its basic
units are short peptide segmentsscalledb-strandsd which are
stabilized by an ordered network of hydrogen bonds between
the atoms of the backbone. The spatial sequence of the
b-strands can follow aparallel or antiparallel pattern, de-
pending on the reciprocal arrangement of the strands termini.

Whetherb-sheets are formed byb-strands connected via
loops’ regions within the same chainsintramolecular sheetsd
or from many oligomeric peptidessintermolecular sheetsd,
as, e.g., in synthetic peptide assemblies andb-amyloids, they
all conform to a variety of twisted and curved geometrical
surfaces.4 The twisting appears inb-sheets due to the non-
zero chirality of the single strands, the backbone geometry of
which can be well approximated by a circular helix. The
mathematical definition for the latter is given by the classical
differential geometry of curves.19

While fully atomistic computational studies of proteins
are quite common, there is also a tradition of using simplified
off-lattice models in the literature.20,21 The latter facilitate
simulations by retaining themost essential featuresof the
peptides and overcome the difficulty with rather excessive
equilibration times of the fully atomistic systems, which of-
ten raise doubt as to the validity of the final results for them.
A number of important results on fast-folding proteins and
peptides have been obtained in the last decade via such
coarse-grained approaches.17,22–25

In the search of a suitable simplified model for the
b-strand capable of generating a stable two-dimensional
tape, one can use the so-called Ca models,26 which retain one
interaction site per residue. Then the intermolecular hydro-
gen bonds could be incorporated, for example, via the
angular-dependent effective potential.27

Another direction is to consider a different class of the
so-called Ca–Cb intermediate level models,26 in which two
or three interaction sites are retained per residue in the back-
bone. A two-dimensional aggregate can then be generated by
mimicking the hydrogen bonding via a sum of effective
Lennard–Jones terms,24 also incorporating the steric effects
of the side chain. Although this is still a crude representation
for the hydrogen bond, we find the second route quite satis-
factory for our purposes.

A. Geometry of the simplified model

In our model, the coarse-grained geometry of the single
b-strand retains three interaction sites per residue. The back-
bone of the single amino acid is represented by two beads
named C and N, standing for the moieties CaHC8O and NH,
respectively. Each sidegroupsamino acid residued is then
modeled by a bead S bonded to C. One could also easily
introduce many types of the sidegroups, but we shall defer
studying more complicated sequences to the future publica-
tions until we are fully satisfied with the performance of the
simplest models of homogeneous sequences.

We shall introduce all of the energy parameters of our
coarse-grained models in units ofkBT. It should be noted,
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however, that these parameters areeffectiveas we have re-
duced the number of degrees of freedom considerably by
introducing united atoms and by describing the solvent im-
plicitly. Thus, these parameters are temperature dependent,
and so are the equilibrium conformations, even thoughkBT
cancels out formally from the Boltzmann weight
exps−E/kBTd. In principle, one could determine how the
coarse-grained parameters are related to the fully atomistic
ones at a given temperature via a procedure analogous to that
of Ref. 28. However, as any inverse problem, it is a consid-
erably difficult task.

In practice, we have chosen the temperature equal to
300 K and the numerical values of most of the energy pa-
rameters so that they broadly correspond to the typical values
in the fully atomistic force fields. Concerning the purely phe-
nomenological parameters, such as the chirality parameter,
their values were chosen so that a reasonable experimental
range of the twist in the structures is reproduced.

B. Potential energy function of model A

The first choice for the potential energy model follows
the guidelines of the model proposed by Honeycutt and
Thirumalai22,23 in their mesoscopic simulations ofb-barrels.
This minimal force field model adopts functional forms of
interactions akin to those typically employed in fully atom-
istic molecular mechanics models.

1. Bond length potential

The length of each bond connecting two monomers is
restrained towards the equilibrium value via a harmonic po-
tential,

Ubond=
Kb

2
sr − reqd2, s1d

in which Kb=200.0kBT Å−2 and req=2.0 Å.

2. Bond angle potential

Bond angles defined via triplets Ci –Ni+1–Ci+1,
Ni –Ci –Ni+1, Ni –Ci –Si, and Si –Ci –Ni+1 are controlled via a
harmonic potential of the form

Uangle=
Ku

2
su − ueqd2, s2d

whereKu=40.0kBT and ueq=120°, ueq=0° for angles cen-
tered at C and N, respectively.29

3. Dihedral angle potential

Dihedral anglea is defined by the following formula:

a = signsad · arccosS sr 12 3 r 32d · sr 32 3 r 34d
ir 12 3 r 32iir 32 3 r 34i

D , s3d

wherer i j =r i −r j and

signsad = signsr 12 · r 32 3 r 34d. s4d

Torsional degrees of freedom are constrained by a sum of
terms associated with quadruplets of successive C beads and
having the form29

Utors = − A coss3ad − B cossad, s5d

whereA=B=4.0 kBT.
An additional dihedral term is introduced to force pla-

narity between pairs of subsequent S beads:

Uplane= − D cossad. s6d

It is applied to the quadruplets Si –Ci –Ci+1–Si+1 and D
=4.0 kBT. The presence of this term, increases the stability of
the structures, by enhancing the steric hindrance due to the
side chains. As mentioned above, this excluded volume ef-
fect is quite essential for generating a two-dimensional tape
as the intermolecular hydrogen bonds have no directional
dependencies in our model.

4. Chirality

Handedness is introduced in the model via a quadratic
term involving only quadruplets of successive C beads, that
is,

Uchiral =
Kt

2
st − t0d2, s7d

whereKt=10 kBT andt is equal to the normalized numera-
tor of the analogous quantity defined in Frenet–Serret picture
of spatial curves:19

t =
r 12 · r 22 3 r 34

ir 12iir 23 3 r 34i
. s8d

The dependence of the chirality parameter on the tempera-
ture is expected to be relatively weak. This is in qualitative
correspondence with the experimental data,6 which has re-
vealed high structural stability of tape assemblies, in a wide
range of temperatures, essentially while water remains liq-
uid. However, more experimental data is required in order to
determine how exactlyKt /kBT depends on the temperature.

5. Nonbonded interactions

A short-ranged Lennard–Jones term is used here in order
to represent, in a highly simplified way, the intermolecular
hydrogen bonding typical ofb-sheet structures,

ULJ = e1FSsLJ

r
D12

− SsLJ

r
D6G , s9d

where the energy constant ise1=5.0 kBT for all the interac-
tions involving the backbone beads. The van der Waals ra-
dius is taken assLJ=2.0 Å for C–C and N–N intermolecular
interactions and assLJ=3.0 Å for C–N pairs. A small attrac-
tive well is introduced between pairs of S united atoms by
choosinge2=1.0 kBT andsSC=2.0 Å in order to mimic vari-
ous attractive forces between the sidegroups.

Finally, a soft-coresstericd repulsion, for all pairs involv-
ing C–S and N–S is added:

Urepul = e1SsSC

r
D12

. s10d

We should emphasize that the intramolecular nonbonded in-
teractions are only included for pairs of sites connected via
more than or equal to three bonds.
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C. Potential energy function of model B

The second choice for the potential energy function out-
lined here provides a more phenomenological approach to
the behavior of the coarse-grained systems from the basic
geometrical principles. For details of the Frenet–Serret pic-
ture of curves we refer the interested reader to Ref. 19. We
shall attempt to exploit and generalize Yamakawa’s geo-
metrical ideas for helical wormlike chain model.30

Here the bond length potential and the nonbonded inter-
actions retain the same functional form as in modelA. The
remaining bonded interactions are modeled as follows.

1. Curvature

The bond angle potential consists of a sum of harmonic
terms involving the curvaturek,

Uangle= o
angles

Kk

2
sk − keqd2, s11d

where Kk=40.0kBT Å−2 and keq=2.0 Å, keq=0.0 Å for
angles centered in C and N, respectively, and with the cur-
vaturek defined as

k2 = 2f1 − cossudg. s12d

This definition of curvature is slightly different from the one
used by Yamakawa as his definition also depends on the
pitch of the helix due to a different normalization
condition.30

2. Torsion

Backbone is constrained towards a planar conformation
by the terms,

Utors = o
dihedrals

Kt

2
t2, s13d

involving only C monomers, withKt=20.0kBT.

3. Chirality

Chirality is introduced here via the term

Uchiral =
Kt

2
st − t0d2, s14d

applied to the quadruplets Si –Ci –Ci+1–Si+1 with Kt

=20.0kBT.

D. Procedure for Metropolis Monte Carlo simulations
in continuous space

For simulations we used the in-house Monte Carlo code
named PolyPlus with the standard Metropolis algorithm18

and local monomer moves, which represents a straightfor-
ward extension to a more generic forcesenergyd field of the
implementation described by us in Ref. 31. This was exten-
sively used in the past and was quite successful in tackling a
wide range of problems for different heteropolymers in solu-
tion.

Note that the periodic boundary was unnecessary in the
present study as we are dealing with an attractive cluster.

Therefore, no boundary conditions were required as the cen-
ter of mass of the system was maintained at the origin.

First, single coarse-grainedb-strands made ofN=11
residues are placed into a planar, antiparallel arrangement.
Starting from this initial conformation, systems of three dif-
ferent sizessnamely, composed ofM =7, 15, and 45 strandsd
have been studied, using either the potential energy modelA
or B and with varied values of the chirality parametert0.
Specifically, we ran simulations in whicht0 takes values in
the two setsh0.0, 0.25, 0.5, 0.75, 1.0j andh0.0, 0.1, 0.2, 0.3j
within the potential energy modelsA and B, respectively.
The difference between the two chosen sets is due to the
different was in which the bonded interactions are imple-
mented in both models.

Simulation times varied from 13107 to 53107 Monte
Carlo sweeps. About one-fifth of that was required to achieve
a good quality of equilibration, which was carefully moni-
tored by analyzing the trends in the potential energy, the
radius of gyration of the tape, and the wave numberk values;
and the rest four-fifth of the run time were the production
sweeps used for sampling of all observables. Thus, we were
able to achieve both a good equilibration and a good sam-
pling statistics for the observables of interest.

III. DEFINITIONS OF SOME OBSERVABLES

The circular helicoid is the minimal surface having a
circular helix as its boundary.19 It can be described in the
parametric form by

x = u cosskvd,

y = u sinskvd, s15d

z= v.

The circular helicoidfsee Fig. 1sadg can be swept out by
moving a segment in space, the length of this segment being
equal to the length of the intervalsdomaind of the parameter
u definition.

The corresponding circular helix can be defined in a
similar way fthick lines in Fig. 1sadg:

x = r cosskvd,

y = r sinskvd, s16d

z= v.

Here, the fixed radiusr is related to the parameteru, with
uP f−r ,rg andk being defined as thepitch wave numberso
that thepitch of a circular helix isP=2p /k. The pitch wave
number is, by convention, negative if the helix is left handed
and positive in the opposite case.

In order to find a connection between the helicoid and
the tapes generated in our simulations, we require a consis-
tent definition of the segment, the motion of which in space
sweeps the surface. For this purpose, we can state that each
strand’s backbone lies along the vector
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n = f2r cosskzd,2r sinskzd,zg, s17d

wherez is taken as the pitch axis of the tape. Furthermore,
we have to assume thatz varies in a discrete way along the
tape withDz=d, whered is the inter strand distancesi.e.,
distance between the nearest-neighbor strandsd. This some-
what modifies the calculation of the pitch, namely,P
=2pd/k.

Finally, three parameters are necessary to fully identify
the vectorn and the circular helix which delimits the surface.
The instantaneous values ofr sthe tape radiusd, k, andd are
calculated by taking the vectorxi j =sC2

i −C10
j d, where Cl

i is
the position of monomer C in thelth residue within theith
strandfsee Fig. 1sbd for detailsg.

The use of the vectorxii is justified because the mol-
ecules behave themselves essentially as rigid rods. In more
details:

ri =
ixiii

2
, s18d

ki,i+1 = arccosS−
xii

ixiii
·

xi+1,i+1

ixi+1,i+1i
D , s19d

di,i+1 =
ixi,i+1 ·xii 3 xi+1,i+1i

ixii 3 xi+1,i+1i
. s20d

This calculation of the parameterk, which is related to a
cosine, misses the correct evaluation of the sign. To over-
come this, an analogous measure related to a dihedral angle
is needed. Thelocal dihedral anglesLDA d is defined as in
Eq. s3d with

r 12 = − xii , s21d

r 32 = xi,i+1, s22d

r 34 = xi+1,i+1. s23d

Monitoring the sign of this quantity gives information about
the handedness of the helical cluster.

Thus, the complete formula for the calculation of the
pitch wave number is

ki,i+1 = signsLDA d · arccosS−
xii

ixiii
·

xi+1,i+1

ixi+1,i+1i
D . s24d

In Table I we exhibit typical experimental values of the pitch
wave numberk for some of oligopeptide-based supramolecu-
lar clusters. These values were obtained from atomic force
microscopy and transmission electron microscopy data.

IV. RESULTS

Tape structures in both modelsA and B appear to be
perfectly stable with single strands packed side by side along
the backbone axis. Therefore, the simplistic representation of
the hydrogen bonding adopted by us is successful in keeping
the strands aligned.

With the increase of the chirality parametert0Þ0 the
single strands acquire a somewhat regular twisted geometry.
The handedness and the magnitude of this twist have been
quantified by calculating the value of the dihedral anglesxi

defined by the quadruplets Si –Ci –Ci+2–Si+2 where32 i

FIG. 1. sad A circular helicoid described in parametric form by Eq.s15d. The
constants used to generate the surface were obtained from Monte Carlo
simulations of the system of sizeM =45 and chirality parametert0=0.3
using the potential energy modelB. The thick linesshelical curvesd sweep-
ing the two surface’s edges are described in parametric form by Eq.s16d. sbd
A schematic representation of the regular tape corresponding to the circular
helicoid. Gray and black points represent the positions of the monomers C2

i

and C10
i swith i =2, M −1d, respectively. The connecting lines correspond to

the vectorsni =f2r cosskvd ,2r sinskvd ,vdg swith i =2, M −1d, where the val-
ues forr, k, andd are, once again, taken from Monte Carlo simulations and
v=2,3,4, . . . ,M −1. The positions of the monomers C2

i and C10
i were used

as the reference data in our fitting procedure.

TABLE I. Values of the pitch wave numberk obtained from the experimental analysis on chiral supramolecular
clusters formed from several synthetic and natural peptides.

Peptide name Primary structure k sdegd Experimental technique Reference

P11-I QQRQQQQQEQQ −3.0 Transmission electron
microscopysTEMd

7

P11-II QQRFQWQFEQQ −1.0 TEM 7
KFE8 FKFEFKFE −8.7 Atomic force

microscopy
8,9

Abs10–35d YEVHHQKLVFFAEDVGSNKSAIIGLM −1.6 TEM 10
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=2,3,4, . . . ,8.Right-handed twist and left-handed twist are
associated with positive and negative values ofx, respec-
tively. The averaged valuessover the production Monte
Carlo sweeps, over all but the terminal strands, and over the
seven differentid of these dihedral values and the standard
deviations are shown in Tables II and III for modelsA andB,
respectively. One can see a systematic increase ofx with the
chirality parametert0, irrespective of the model choice.

Increasing the chirality parametert0 leads also, as ex-
pected, to a persistent macroscopic twist of the tapes, which
monotonically increases with the value oft0. The numerical
measure of the handedness of this twist could be expressed
in terms ofsLDA d defined by Eqs.s3d ands21d–s23d. Figure

2 shows that, when chirality is introduced, the sign of LDA
becomes well–defined and that the absolute value of LDA
increases witht0. It is worthwhile to remark also, as a proof
of the consistency of our procedure, that the achiral structure
has no well-defined sign for LDAssee Fig. 2d. Moreover, one
can observe that after changing the sign of the chirality pa-
rametert0 the sign of LDA, and hence the handedness of the
tape, will be reversedsdata not shownd.

Figures 3 and 4 also show averaged equilibrium snap-
shots related to the systems with different values of the

TABLE II. Average value of the individual strand chirality anglex and its
standard deviationsx obtained from Monte Carlo simulations in the poten-
tial modelA.

t0 x sdegd sx

M =7
0.00 0.11 0.04
0.25 3.77 0.29
0.50 7.34 0.50
0.75 10.50 0.63
1.00 13.45 0.75

M =15
0.00 0.05 0.02
0.25 3.79 0.27
0.50 6.90 0.41
0.75 9.52 0.53
1.00 12.01 0.67

M =45
0.00 0.19 0.01
0.25 4.39 0.28
0.50 6.95 0.43
0.75 8.42 0.50
1.00 11.68 0.74

TABLE III. Average value of the individual strand chirality anglex and its
standard deviationsx obtained from Monte Carlo simulations in the poten-
tial modelB.

t0 x sdegd sx

M =7
0.0 0.08 0.05
0.1 7.16 0.67
0.2 13.22 1.51
0.3 18.73 2.22

M =15
0.0 0.09 0.02
0.1 6.85 0.66
0.2 12.39 1.44
0.3 17.30 2.35

M =45
0.0 0.42 0.07
0.1 6.20 0.74
0.2 12.21 1.62
0.3 16.73 2.47

FIG. 2. Plot of the average LDAfEqs. s3d and s21d–s23dg vs the dihedral
angle number along the strand,n, obtained from Monte Carlo simulations.
Data are related to systems of sizeM =15 within potential energy modelB.
Different lines correspondsfrom top to bottomd to tapes with chiral equilib-
rium parametert0=0.0,0.1,0.2,0.3fEqs.s7d and s8dg.

FIG. 3. Averaged structures obtained from Monte Carlo simulationssover
the last 106 Monte Carlo sweepsd for systems of sizeM =15 within the
potential energy modelA. Here the values of the chirality parameter were
t0=0.25,0.5,0.75,1, respectively.
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chirality parametert0 in modelsA andB, respectively. From
these one could see how the structures change from a flat
into more and more twisted tapes ast0 increases.

Next, we would like to compare our simulated structures
with the geometry of a left-handed circular helicoid, the defi-
nition for which is given in Sec. III. Specifically, we are
interested in characterizing the circular helices which sweep
the boundaries of that surface. The details of calculation of
the three parameters,k, d, and r, which are necessary for
connection of theidealizedgeometry with that of the simu-
lated tapes, can also be found in Sec. III and in Fig. 1. We
can calculate these values from the coordinates of each two
consequent strands.

Clearly, the chains at the boundaries of the tape behave
in a somewhat different way from those buried inside. More
generally, despite of the intramolecular origin of chirality, the
conformation of single strands within a tape also depends on

their interactions with nearest-neighboring strands. As chiral-
ity is increased, the deformation of the flat geometry of a
single strand progresses. Therefore, for fairly short tapes
with small M we could have quite significant finite size ef-
fects leading to considerable deviations from the regular geo-
metrical surfaces.

Thus, we shall compute the average values and the stan-
dard deviations of the quantitiesk, d, andr over the span of
the tapeswith the exception of the two terminal strands on
both edges to reduce the boundary effectsd, as well as over
the production sweeps, in order to understand at what extent
they vary along the tape. These values are presented in
Tables IV and V for modelsA andB, respectively.

The values of the helix radiusr does not seem to vary
significantly along the tape, which is reflected in a relatively
small value of its standard deviationsr. Evidently, the aver-
age value ofr is essentially independent of the number of
strandsM or the chirality parametert0 as it is related to the
conformation of a single strand. While the standard deviation
of the distance between two strandsd is relatively large, we
do not observe any systematic dependencies of its values on
either the location within the tape or the value of the chirality
parametert0. A large value ofsd could be attributed to the
intermolecular interactions’ contribution to the distances be-
tween nearest close-packed strands.

However, the pitch wave numberk is strongly dependent
on the location of the strands’ pair used in its calculation
inside the tape, which is especially striking for small systems
made ofM =7 andM =15 chains since they do not as yet
complete a full turn of the helicoid. The results of the calcu-
lations of the average and standard deviation of the pitch
wave numberk shown in Tables IV and V were thus obtained
by taking only the three central strands, which has the ad-
vantage that the results become less sensitive to the edge
effects. Clearly, the central area of the tape of different sizes
M behaves, as far as the pitch wave number is concerned, in
a similar way and numerically approaches the value ofk in
the tape ofM =45 strands. This can also be seen from the
histogramssprobability distributionsd of k in Fig. 5. Note that
the location of the peak shifts to the right withM. The values
of k which we have obtained in the range of the studied
chirality parametert0 choices correspond to the experimental
values ofk shown in Table I. Thus, we need about 3–5kBT
for Kt in our model in order to obtain the highest of the
known experimental values ofk.

To check the quality of our parameters, we then per-
formed, for each system, a self-consistent fitting procedure,
in which we considered two data sets,r1 and r2, which are
related to the two respective edges of the tape. These data
sets comprised a sequence of the average positions33 of the
penultimate monomers in consecutive strands within the
tape. Note that the penultimate monomers were considered
rather than the end monomers to reduce the “end effects.”
Also, because the strands were assembled in an antiparallel
pattern, one typical sequence of positions would comprise
monomers C2

1,C10
2 ,C2

3,C10
4 , . . . ,C2

M−1. These were fitted with
a regular helix described by Eq.s16d sweeping the end of the
regular helicoid with the parametersd, r, and k calculated
from the simulation data.

FIG. 4. Averaged structures obtained from Monte Carlo simulationssover
the last 106 Monte Carlo sweepsd for systems of sizeM =45 within potential
energy modelB. sad Achiral system witht0=0.0. sbd Introduction of chiral-
ity in the force fieldst0=0.1d leads to the stabilization of a regularly-twisted
supramolecular tape.scd A larger twist is obtained fort0=0.3.

134901-7 Structure and stability of chiral b-tapes J. Chem. Phys. 122, 134901 ~2005!

Downloaded 04 Apr 2005 to 134.93.44.140. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



The fitting procedure for each system produces, as the
final output, the two mean displacementskDlr1

andkDlr2
be-

tween theregular helix and the data setsr1 and r2, respec-
tively. Since the data setsr1 andr2 are statistically equivalent
we calculated the mean displacement of our points from the
regular helixkDl averaged over the two values. As can be
seen from Table VI, the resulting mean displacements are
relatively small compared to the size of the van der Waals
radius of various monomers for the systems made ofM =7
and M =15. Therefore, our overall procedure is quite satis-
factory. Note that a somewhat larger values ofkDl for the
systems made ofM =45 strands can be related to the need for
a better equilibration in this largest of the studied systems,
which was also seen from monitoring the trends in the global
observables such as the squared radius of gyration of the
tape.

Thus, overall, we conclude that both of the potential
models suggested here are successful in generating chirality
within a stable tape cluster.

V. CONCLUSION

In this paper we have proposed two coarse-grained mod-
els for short peptides in an extendedb-strand–like conforma-
tion. We also have studied these strands self-assembled into a
supramolecularb-tape in case of the model oligopeptides
with identical side groups attached. A fine tuned combination
of Lennard–Jones potential terms was successful in stabiliz-
ing the chains within such a two-dimensional structure.

Chirality was then introduced on a molecular level, re-
sulting in a regular twist of the surface of the tape. Within the
two different models we have investigated the effect of
changing the values of the chirality parametert0. As we only
considered homogeneous sequences yielding tapes with
identical sides, the equilibrium structures obtained at the end
of the simulations had a geometry of a circular helicoid with
the pitch wave numberk increasing linearly witht0.

In modelA the chirality term is added as a simple asym-
metric contribution to the threefolded dihedral potential
which is typically used in coarse-grained models of

TABLE IV. Average value and standard deviations, obtained from Monte Carlo simulations, for the helical
parametersk fEqs.s19d and s24dg, d fEq. s20dg, andr fEq. s18dg for the potential energy modelA.

t0 k sdegd sk d sÅd sd r sÅd sr

M =7
0.25 −2.2 1.0 1.97 0.35 13.6 0.2
0.5 −3.3 1.2 2.00 0.31 13.5 0.2
0.75 −4.5 1.2 2.10 0.30 13.5 0.2
1.0 −5.5 1.2 2.01 0.29 13.4 0.2

M =15
0.25 −2.2 0.9 2.06 0.37 13.6 0.2
0.5 −3.1 1.1 1.81 0.22 13.6 0.2
0.75 −3.9 1.2 2.20 0.30 13.6 0.2
1.0 −4.8 1.2 2.01 0.30 13.5 0.2

M =45
0.25 −2.2 1.2 2.35 0.40 13.6 0.2
0.5 −3.2 1.2 2.44 0.34 13.6 0.2
0.75 −4.0 1.0 2.43 0.31 13.6 0.2
1.0 −5.0 1.0 2.39 0.26 13.5 0.2

TABLE V. Average value and standard deviations, obtained from Monte Carlo simulations, for the helical
parametersk fEqs.s19d and s24dg, d fEq. s20dg, andr fEq. s18dg for the potential energy modelB.

t0 k sdegd sk d sÅd sd r sÅd sr

M =7
0.1 −2.6 1.2 1.86 0.31 13.7 0.2
0.2 −3.8 1.3 2.00 0.29 13.7 0.2
0.3 −5.0 1.2 1.95 0.25 13.6 0.2

M =15
0.1 −2.5 1.1 2.12 0.33 13.7 0.2
0.2 −3.4 1.2 2.15 0.31 13.7 0.2
0.3 −4.2 1.2 2.19 0.26 13.7 0.2

M =45
0.1 −2.4 1.1 2.25 0.26 13.7 0.2
0.2 −3.6 1.2 2.46 0.31 13.7 0.2
0.3 −4.2 1.2 2.47 0.26 13.7 0.2
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b-sheets.22,23The remaining bonded interactions in their ana-
lytical expressions and in the numerical strength were taken
akin to those of the fully atomistic force fields. Therefore, in
essence, here we were introducing chirality into a well-
established potential energy model.

Model B, conversely, is more coarse grained and relies
on the principles of the differential geometry of curves and
surfaces.13 Importantly, in this model we still have obtained
the results comparable to those of the more detailed modelA.
This establishes a degree of universality in the transfer of
chirality from the intramolecular to the supramolecular level.
Despite the difference in the way how chirality was intro-
duced in the both models, a macroscopic regular twist was
generated equivalently.

Both models could be easily extended to include
hydrophobic/hydrophilic and explicitly charged sidegroups
leading to the difference of the tapes’ sides, something we
would like to study in the future. Such an extended study of
different coarse-grained oligopeptide sequences of interest
should allow us to describe higher order self-assembled
structuressribbons, fibers, and fibrilsd in detail, providing
valuable insights for the experiment.
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