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Abstract

The general mechanism of confinement phase transition is clarified in
3-d Fock–Schwinger gauge at finite temperature for SU(2) and SU(3) glu-

odynamics. The variables at infinity initially introduced in the algebraic
QFT play the essential role for this phase transition. In more conventional

terms the arising variable at infinity σ→ is the expectation value of the
gauge field temporal component A0. So the considered mechanism is
related with the problem of A0-condensation.

It was early realized that the Yang–Mils theory should possess the prop-
erty of confinement. However even nowadays this problem does not appear
as one being firmly established. Various approaches were tried in hope to
achieve comprehension of this phenomenon [1], yet with just mild success.
May be the reason is ine!ciency of perturbation expansions as long as truly
collective e”ects are concerned. The main aim of this report is to outline a
reliable theoretical framework for the e”ect under consideration. We present
here some preliminary results of our nonperturbative approach that is plau-
sibly capable to shed light on the underlain physics.

In such treatment removal of superfluous (unphysical) degrees of freedom
would be highly desirable. Therefore one has to fix a suitable physical gauge
to work in. We choose the 3-dimensional Fock–Schwinger gauge [2-4]

x̂A(t,x) = 0 , x̂ =
x

x
, x = | x | , (1)
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where the x-transversal components of electric field strengths E⊥ and gauge
fields A⊥ are the canonical variables of YM theory obeying the CCR. The
Gauss law constraint →E = 0 possesses in FS gauge the explicit simple
solution

E = E⊥ + x̂E‖ , E‖(x) = −
1

x2

∫ x

0
y2 dy→E⊥(yx̂) . (2)

If one plugs the latter into the YM Hamiltonian this yields no more than
quartic expression versus canonical variables. Let us indicate that we sacrifice
manifest Poincaré covariance and locality of the Hamiltonian to get these
simplifications.

Next we consider the YM partition function at inverse temperature ω
written as path integral over fields periodic in “time” t

Z =
∫

DA⊥DE⊥ exp
[
∫ ω

0
dt

∫

dx f 2
R (x)(i Ȧ⊥E⊥ −

1

2
E2 −

1

2
B2)

]

, (3)

where B denotes the magnetic field strength. The cut–o” function fR with
the properties

fR(x) =

{

1, | x | ≤ R′ R′ = (1− ε)R
0, | x | ≥ R′′ R′′ = (1 + ε)R

(4)

was introduced in (3) to prevent infrared singularities. To proceed further
we exploit the simple observation that only the longitudinal parts of field
strengths contain nonlocal as well as nonabelian terms. Namely we make the
integrand of (3) gaussian in A⊥ and E⊥ by introducing new “scalar” fields
via

e−
1

2

∫

dx f2

R
(E2

‖
+B2

‖
) =

∫

DλDν e
∫

dx [− 1

2
(λ2+ν2)+i f

R
(λE‖+νB‖)]. (5)

Further step is in excluding of nonlocality
∫

dx fR(x) λ(x)E‖(x) =
∫

dx→E⊥(x)(fR(x)σ(x) + σR(x)) , (6)

where the new variables are

σ(x) =
∫ →

x
dy λ(yx̂) , σR(x) =

∫ →

x
dy f

′

R(y) σ(yx̂) . (7)

In terms of ν, σ and σR the theory looks like e”ectively localized. Note how-
ever that σR(x) contains purely delocalized contributions after the infrared
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cut–o” removing (R → ∞) because supp f
′

R(x) = [R′, R′′]. Accordingly it
fails to possess a well–defined limit unless special conditions on the space of
states have been imposed. There lies a deep algebraic theory behind it devel-
oped mainly by G. Morchio and F. Strocchi [7-9]. From this point of view σR

tends to what is called a variable at infinity σR(x)
R→→−→ σ→(x̂) . At present

stage σ→ may be looked at as some kind of order parameter appearing in the
YM theory, and our next task is to find out it’s equilibrium value.

Performing integrations over A⊥, E⊥ in (3) (see [10] for more detail) we
get

Z[ω, σ→] =
∫

D σD ν exp (−W [σ + σ→, ν] ) ,

W [σ, ν] = 1
2ν

2 − 1
2σ∆ σ + 1

2K− • C−1
+ •K+ + 1

2K+ • C−1
− •K− + 1

2tr log C+C− .(8)

C± = −∆x −→2
t ±D , K± = ς± ν ±→t ς± σ , (9)

→ab
t = δab ςt − gtabc σc , Dab = gtabc νc . (10)

In (8) the dot denotes integration over t and x together with summation over
space and colour indices, ∆x is the radial part of the Laplacian. Projected
derivatives are defined by means of

ςi
± = Πij

± ςj , Πij
± =

1

2
(δij − x̂i x̂j ± i εijk x̂k) . (11)

The saddle point method at the “classical” level requires to look for min-
ima of the e”ective action W [σ, ν]. The simplest possible Ansatz of constant
σ and ν is used that is, however, rather natural from physical viewpoint.
Denoting1 va = iωg2πν

a, sa = ωg
2πσ

a we present the e”ective potential (= free
energy density) in the form

F =
8π2

ω2 g2
χ0 F [sa, va] , (12)

clearly emphasizing its nonperturbative character. Here

F [sa, va] = −a(va)2 + U [sa, va] , U [sa, va] = π−1
→
∑

n=−→

∫ →

0
dq log det C ,

(13)
Cab[sa, va] = δab(q2 + n2) + i tabc(2n sc + vc) + tabc tbcd scse (14)

1both sa and va are real
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with

a =
π2

ω2 χ0
.

In (12), χ0 is a certain combination of infrared and ultraviolet regulators
with dimension of (mass)2. The consistent theory would somehow relate it
to confinement radius and UV normalization point, but this theory is still
far beyond of our present knowledge. Nevertheless it may be shown [11, 12]
that χ0 is nothing but the string tension of SU(2) gluodynamics!

For the SU(2) group, explicit analysis [10] of function U [sa, va] shows that
the vectors sa, va must be collinear, otherwise the imaginary part of F is
nonvanishing. Then U is periodic versus s, and for 0 ≤ s ≤ 1

U [s, v] = −
1

2
(1−2s)2+

→
∑

k=−→

(

√

(k + s)2 + v+
√

(k + s)2 − v −2 | k + s |
)

.

(15)
The real part of F is a rather complicated function. The available positions
of its minima are s = 0, u = n and s = 1

2 , u = n + 1
2 with n ≃ Z, and

u =
√

| v |. In any case, however, just two of them with n = 0 are stable
belonging to the region where ImF = 0. The second minimum is the deeper
one, but it emerges only below the critical temperature

Tc =
√
ac χ0/π ,

ac = 2
√
2− 8

→
∑

k=0

(4k + 1)!!

(2k + 1)! 22k+1

[

(1−
1

24k+3
) ζ(4k + 3)− 1

]

) 2.61882 . . .

(16)
The instant of the phase transition is depicted on the Figure. Thus we have
found out the phase transition (presumably of the first order) giving rise to
nonzero value of the variable at infinity

σ0
→ =

π

ω g
.

For SU(3) group the situation is mainly quite similar. It is easy to show
that under the same assumption one has [11]

U [sa, va] = U [s3, v3] +
∑

±
U [(s3 ±

√
3 s8)/2, (v3 ±

√
3 v8)/2] . (17)
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Thus the e”ective action is invariant under the centre Z3 of SU(3) acting
by shifts s8 → s8+

2√
3
and s3 → s3+1, s8 → s8+

1√
3
. Hence it su!ce to con-

sider it only on the fundamental region
Figure:

Re F ’s form at the instant of the phase transition — solid line:
s = 0.5, a = 2 and for emergence of nonstable minimum — dashed

line: s = 0, a = 0.38.

formed by hexagon in {s3, s8}-plane. After the phase transition below TSU(3) =
√

3/2 TSU(2) the two nontrivial deepest minima laying inside this hexagon

+s± = (12 ,±
1

2
√
3
) arise. Finally the third type of minimum available +s0 =

(0, 1√
3
) emerges at the temperature

√
2 TSU(2).

The essence of this phase transition can be clarified by the help of long–
range dynamics formalism by G. Morchio and F. Strocchi [7-9]. Roughly
speaking, this elaborated algebraic theory considers models in which quan-
tum equations contain delocalized variables commuting with all local ones.
They are usually referred to as variables at infinity and belong to centre of
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the observables algebra. In our case one gets ∀ A

[ σa
→(x̂) , A ] = −w- lim

R→→

∫ →

0
dy f

′

R(y)
∫ →

0

z2 dz

max(y, z)
[→Ea(zx̂) , A ] = 0 .

(18)
The last is true by virtue of finite integration region and the limit is un-
derstood in the weak sense. Such quantities have definite c-number values
π(σ→) in any primar representation. Quantum dynamics is implementable
by means of any Hamiltonian only in irreducible (vacuum) representations
for which the corresponding values of variables at infinity satisfy certain triv-
iality condition. The explicit dependence of YM evolution on this values is
as follows

Ȧa
⊥ k = Ea

⊥ k − Pkl→l( σ − π(σ→) )a , Pkl ≡ δkl − x̂k x̂l , (19)

Ėa
⊥ k = gtabcEb

⊥ k ( σ − π(σ→) )c − Pkl→iF
a
il . (20)

This dynamics is generated by the Hamiltonian with cut–o”

HR = HYM
R + ΦR (π(σ→)− σ→) , ΦR(ς) =

∫

|x|≤R′′
dx→Ea

⊥(x) ς(x̂)
a ,

(21)
here the standard Yang–Mills Hamiltonian is given by

HYM
R =

1

2

∫

dx fR(x) [ (E
a)2 + (Ea

‖ )
2 +

1

2
(F a

ij)
2 ] , (22)

and cut–o” function is (4). The latter Hamiltonian is invariant under the
group generated by the cut–o” charges ΦR(ς) with arbitrary functions of
angles ς(x̂)

[HYM
R , ΦR(ς)] = 0 , [ΦR(ς

′) , ΦR(ς
′′)] = −iΦR( [ς

′ , ς ′′] ) . (23)

These transformations enlarge every representation of the kind via includ-
ing elements of nontrivial centre generated by variables at infinity. They
form the group of gauge transformations at infinity G→ = G/Gpr , where
G is the whole gauge group and Gpr the subgroup of proper (small) gauge

transformations (for g ≃ Gpr g(x)
|x|→→−→ 1). It is somewhat surprising that
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the Hamiltonian (21) coincides with those obtained by applying the Regge–
Teitelboim ideology [13] from the initial YM Hamiltonian under the behavior
A0 ∼ const at spatial infinity. This is clear from the fact that the extra term

ΦR(ς) =
∫

dx̂ ςa(x̂) R2Ea
‖ (Rx̂) (24)

was a boundary one before reduction.
The (unique) extension of time evolution to the enlarged algebra gives

rise to nontrivial dynamics at infinity. In the Hartree–Fock approximation
this dynamics represents colour rotations

σ̇a
→(x̂) = −gtabc σb

→(x̂) π(σ→)c . (25)

The triviality conditions may be written as

Z[ω, π(σ→)] = Z[ω, 0] (26)

Then the π(σ→)’s corresponding to vacuum representations are

π(σ→)a ≡ i σa
n, | σn |=

2π n

ω g
, n ≃ Z+ . (27)

They are purely imaginary as well as the equilibrium value of σ→ earlier ob-
tained. In the SU(3) case similar formula is obtained from that exp(i ω ΦR(σn))
is the element of the centre of this group. The dynamics at infinity depends
on σn and its Hamiltonian is defined via Kirillov canonical structure [14].

Then the carrier space stable under both time evolution and symmetry
transformations is a direct integral of primar representation spaces.

Since there is a direct relation between time evolution of a system and

its equilibrium state [15], i. e. via the KMS condition ωω(Aαt[B] )
∣

∣

∣

∣

t=i ω =

ωω(BA ) , ∀ A,B on the equilibrium state ωω at inverse temperature ω with
respect to dynamics αt, we have to take dynamics at infinity into account
while constructing the Gibbs state.

The equilibrium state corresponding to naive partition function in a pri-
mar representation with a fixed value of imaginary σ→ constructed as the
Gauss state with the Hamiltonian (21)

ZR[ω, σ→ − σn] = Tr e−ω [HY M
R

−iΦR(σ∞−σn)] (28)
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does not satisfy desired KMS condition under R → ∞.
Namely, the correct averaging procedure should include integration over

variables at infinity with Gibbs factor e−ω h, where h(σ→) is the Hamiltonian
of dynamics at infinity, as well as summation over di”erent vacuum sectors.
Proceeding in this way we get eventually the equilibrium state satisfying the
KMS condition and invariant under symmetry transformations.

It may be shown that summation over vacuum representations (27) oblit-
erates specific features of dynamics at infinity, and the correct partition func-
tion takes the form

Z =
∫

dσ→ Z[ω, σ→] . (29)

We would like to stress that this representation for Z is a direct consequence
of nontrivial dynamics of variables at infinity in contrast to the standard
picture of spontaneous symmetry breaking. In (29), dσ→ ≡

∏

x̂
dσ→(x̂) is the

Haar measure of G→ group, and integration is to be performed over a convex
region including the equilibrium value of σ→. This is the whole group range
below critical temperature as follows from our previous evaluation. Taking
(28) into account we see that

Z =

{

Tr e−ωH
Y M , T > Tc

Tr (e−ωH
Y M Ps), T < Tc ,

(30)

where Ps is the local singlet projector at infinity by virtue of the well–known
Peter–Weyl theorem [16]. The same projector Ps appears inside any local-
ized variables’ correlation functions below Tc. Its emergence prevents local-
ized colour objects from propagating to spatial infinity leading to physically
acceptable picture of colour confinement.

The chief issue of our investigations is thus the following. On quantum
level the Yang–Mills theory accepts natural extension via incorporating extra
classical degrees of freedom. The latter are conjugate to generators of gauge
transformations at infinity, in the sense that they contribute to the partition
function as in (28). At temperatures below Tc the equilibrium values of these
quantities are nonzero. This fact entails an abrupt change of the equilibrium
state structure at Tc providing colour confinement.

It should be stressed that these statements are in fact gauge independent.
The specific rôle played by the Fock–Schwinger gauge is that the necessity
of incorporating variables at infinity manifests itself most clearly. Having
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established this fact we are able to use any gauge for practical calculations.
Namely, it is easy to show in general case

Z[ω] =
∫

G∞

dζ
∫

DADet

[

δ χ(Aω)

δ ω

]

ω=0

δ[χ(A)] exp
{

−W
Y M

[A0 + (gω)−1 ζ ,A]
}

(31)
where χ[A] = 0 is the gauge condition. In (31) the path integral over A
is evidently the partition function in presence of the external field Aext

0 =
(gω)−1 ζ(x̂) . It is worth to note also that integration over ζ restores gauge-
and Poincaré- invariance of Z. As for the T = 0 limit, it is permitted in
formulae like (31) only after the ζ-integration.

The formula (31) provides link with more conventional approaches. Re-
cently the problem of A0-condensation has attracted certain interest both in
the field theory and on lattice [17, 18]. It was also realized that it is closely
related with confinement phase transition. However the obtained results are
not very coherent in di”erent approaches. It is interesting that the first order
phase transition giving rise exactly the same value of A0 as predicted here
can be seen at g2 large enough in [17]. However this fact wasn’t especially
appreciated in that work. Moreover the e”ective action at this extremal point
ceases its gauge dependence.

We entertain a hope that the use of (31) may facilitate the calculation of
condensates, correlation functions etc., and the analysis of renormalization
procedure, that is in any case indispensable for complete substantiation of
our approach. However these points are not clear yet.

We would like to thank E. E. Boos for his permanent support of this
research and V. O. Soloviev for useful discussions.
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