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Abstra
t

We analyse data from the dynami
 light s
attering of poly(N-

isopropyla
rilamide) in water solution as we 
ross the 
ollapse transi-

tion. Experimental data are interpreted by the Gaussian self{
onsistent

Zimm model that takes into a

ount two- and three{body ex
luded

volume e�e
ts, and Oseen hydrodynami
 intera
tions, as well as by

the standard 
umulant and Contin analyses. By �tting the dynami


stru
ture fa
tor we extra
t the temperature dependen
e of the di�u-

sion 
oeÆ
ient D and the �rst relaxation time �

1

a
ross the 
ollapse

transition for a range of s
attering angles. The relaxation time �

1

possesses a 
hara
teristi
 peak at about 32:4

Æ

C due to slowing of the

internal motions of the polymer at the theta point, and a minimum

at 33:4

Æ

C. We interpret this as a 
ombination of 
ollapse 
losely

followed by the growth of 
riti
al 
orrelations. At large s
attering an-

gles we rea
h the universal k

3

regime, and observe that this behaviour

vanishes at the onset of the 
ollapse transition.
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1 Introdu
tion

We here dis
uss some re
ent experimental work on the 
ollapse transition of

Poly-N-isopropyla
rylamide. This is a part of a program of resear
h aimed at

elu
idation of the equilibrium and non{equilibrium dynami
s in the vi
inity

of the 
ollapse transition. We have used gel permeation 
hromatography to

isolate sele
ted narrow fra
tions of polymer and studied the system using

dynami
 light s
attering.

With the systems that we have 
hosen it is possible to see the e�e
ts

of 
ollapse prior to 
riti
al phase separation at the upper 
onsolute point

[1℄. As a result it be
omes of interest to apply a self{
onsistent mean{�eld

theory to interpret the result of light s
attering, up to the phase separation.

Reasonable agreement is a
hieved between theory and experiment. We �nd

that the Flory 
oil possesses internal modes that are relatively well �tted by

the theory, produ
ing estimates of the size and internal relaxation time of

the 
oil. We also �nd a universal large momentum regime, and 
on�rm the

stret
hed relaxation law that des
ribes it.

At the 
ollapse point we �nd anomalously long time{s
ales that vanish

just after 
ollapse, and with slightly in
reased temperature we again �nd a

long time asso
iated with 
riti
al 
u
tuations.

2 Experimental

The PNIPAM polymer was prepared with ammonium persulphate as initia-

tor in twi
e-distilled water under Ar. Ferrous sulfate in 
atalyti
 amounts

was found to produ
e a polymer of lower mole
ular weight. The rea
tion was


arried at out 25

Æ

C resulting in a 
lear solution. Extremely high mole
ular

weights 
an be prepared without 
atalyst, but we do not dis
uss su
h mate-

rials in the present report. The raw produ
t from the rea
tion 
onsists in all


ases of a broad distribution of mole
ular weights, whi
h we have separated

using gel permeation 
hromatography. Using large 77ml 
olumns �lled by

Sefa
ryl SH-500R gel we have found that if the 
on
entration of the sample

loaded onto the 
olumn is kept suÆ
iently low, and the elution rate suÆ-


iently slow, the separation is relatively e�e
tive. Mole
ular weights have

been estimated from the literature [1℄,[2℄. More details of the pro
edure are

given in referen
e [3℄. Dynami
 Light S
attering (DLS) was 
arried out using

a Coherent 5W tunable Ar

+

laser and Malvern PCS-4700 instrument with
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256{
hannel 
orrelator.

3 Model

The following ideas have been introdu
ed in referen
e [4℄ as an approximate

means to model the dynami
 light s
attering of systems a
ross the 
ollapse

transition. We intend to test the theory, with the experiments des
ribed

above, thereby outlining its su

esses and limitations. We des
ribe the poly-

mer in dilute solutions [5℄ by the Langevin equation
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is the Oseen hydrodynami
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For simpli
ity we may restri
t ourselves by polymers satisfying 
y
li
 bound-

ary 
onditions x

m+N

= x

m

; m = 0; : : : N � 1 sin
e open and 
y
li
 poly-

mers are equivalent for suÆ
iently large degree of polymerization N . Besides

the 
onne
tivity term proportional to k

q

, we take into a

ount the ex
luded

volume intera
tion potential, V , that in
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ontributions from two- and

three{body e�e
ts,
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where u

2

; u

3

are virial 
oeÆ
ients. The noise has the se
ond order 
orrelation

fun
tion
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In our self{
onsistent approa
h the dynami
s of the full Langevin equation

(1) is approximated by the Gaussian sto
hasti
 ensemble with the Langevin

equation,

�

q

_x

�

q

(t) = ��V

q

(t)x

�

q

+ �

�

q

(t) (5)

and a diagonal 
orrelation fun
tion of the form (4) with H

��

0

qq

0

= �

�1

q

Æ

��

0

qq

0

.

Here the potential, �V

q

(t) and the fri
tion, �

q

are unknown fun
tions deter-

mined from the self{
onsisten
y equation.
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This equation is simpli�ed for small q, when we 
an seek solutions with

the properties,

�V

q

= NA

�1

q

2�

; q �

2�q

N

; (6)

where A is some unknown 
onstant. Let us de�ne parameters b and � by the

relation

1

3

h(x
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2
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; (7)

then � = � � 1=2 and b '

p

Ak

B

T . As we have shown [4℄, for small q the

self{
onsisten
y equation redu
es to the dominant balan
e equation, from

whi
h we may extra
t three di�erent regimes. When u

2

> 0 we �nd the

balan
e between the order q

2

and the u

2

term giving the Flory exponent

� = 3=5 and b

2

� (u
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=k)

2=5

. When u

2

= 0 we have a balan
e between q

2

and

the u

3

term, and so-
alled �-point results: � = 1=2, b

2
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1=4

. Finally,

when u

2

< 0, we are in a 
ollapsed state with balan
e between the two{body

and three{body terms giving � = 1=3 and b

2

� (�u

3

=u

2

)

2=3

. Finally Oseen

hydrodynami
 intera
tions lead to the fri
tion of the form

�

q
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s

N

�

q

1��

: (8)

The 
orrelation fun
tions are found to be for q 6= 0
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and for q = 0 di�usive 
omponent
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where D = k

B

T=�

0

is the di�usion 
onstant. Thus the relaxation times are

expressed as �

q

= �

q

=�V

q

and in this model are
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By de�nition the dynami
 stru
ture fa
tor is,

g(k; t) =

1

N

X

nm

�

exp ik(x

n

(t)� x

m

(0))

�

: (14)
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The wave ve
tor k is related to the wave length �, refra
tion index n and

s
attering angle � as follows,

j k j=

4�n

0

�
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�

2

In the Gaussian approximation the stru
ture fa
tor takes the form,
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Now we extra
t the 
ontribution of the zero di�usive mode from the remain-

ing internal modes and substitute the averages,

g(k; t) = g
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It is possible to 
onsider two di�erent regimes that result in further sim-

pli�
ations. In the limit k

2

b

2

N

2�

<< 1 one 
an negle
t the 
ontribution of

internal modes, and the stru
ture fa
tor will be given entirely by the di�u-

sion part g

0

(k; t). In the opposite 
ase, k

2

b

2

N

2�

>> 1, the 
ontribution of

internal modes be
omes essential. In fa
t for large N , their distribution is

almost quasi{
ontinuous, so that we may 
onvert the sums into integrals. If

we 
onsider suÆ
iently large times also, the formula takes espe
ially simple

form

g

int

(k; t) = g(k; 0) exp(�H(0)(�

k

t)

2=3

) ; (19)

�

k

'

k

B

T

�

s

k

3

; (20)
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p

��(2�)=(2

3=2

�(5=3)��(��)) and �

k

t >> 1.

Another quantity of interest is the 
umulant or logarithmi
 derivative at

zero time. For large k we �nd by simple di�erentiation,
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d
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2
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The value C(�) may be independently expressed in terms of the stati
 stru
-

ture fa
tor [6℄,

C(�) k

3

= g(k; 0)

�1

Z

dq

(2�)

3
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and we note that it is k independent if we use the asymptoti
 formula for

k

2

b

2

N

2�

>> 1,

g(k; 0) ' (kb)

�1=�

: (23)

It is interesting to observe that in this regime C(�) does not 
ontain any

polymer spe
i�
 parameters, and it is therefore referred to as the universal

k

3

regime.

It is possible to derive another representation for the dynami
 stru
ture

fa
tor valid for any k. In a previous work [4℄ we have derived the formula

g
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1

3
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k

B
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t), I

n

(z) are modi�ed Bessel

fun
tions and summation is restri
ted by the 
ondition

m

1

+ 2m

2

+ : : :+ (N � 1)m

N�1

= 0 : (25)

Su
h a representation is useful for asymptoti
s at large t when it is enough

to 
onsider only leading terms in the series (24). In the simplest 
ase, we

may retain only the 
ontribution of the �rst internal mode and the formula

then redu
es to simply,

g

int

(k; t)=g

int

(k; 0) / I

0

(k

2

G

1

(t)) : (26)

4 Results and Dis
ussion

To interpret the experimental data and test the theory we have �tted the


orrelation fun
tion by the theoreti
al formulae for the dynami
 stru
ture

fa
tor of various samples. Here we shall report only on one 
ase whi
h is

somewhat representative of our �ndings. Thus, the following data are for

a polymer of approximate mole
ular weight 20 � 10

6

. In Fig. 1 we show
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the dependen
e of the apparent hydrodynami
 radius R

app

upon the inverse

modulus of s
attering ve
tor, k =

4�n

0

�

sin(

�

2

), where � is the wavelength of

the in
ident light, n

0

the refra
tive index of solvent, and � the s
attering an-

gle. R

app

was obtained from the �rst 
umulant of the 
orrelation fun
tion [7℄.

The strong k dependen
e of R

app

at 20

o

C arises from the internal motions

of the polymer, these be
oming apparent when

1

k

� R

g

(R

g

{radius of gyra-

tion). The Contin analysis [8℄ for this polymer, shown in Fig. 2.a, exhibits

a single peak at low angles in the 
oil state a se
ond peak 
orresponding to

internal modes emerging only at large s
attering angles. We note the rather

interesting phenomenon illustrated in Fig. 2.b for the 
ollapsed state. Here

the assignment is reversed, so that the peak at larger length{s
ales is inter-

preted not as di�usion, but 
orrelation between 
ollapsed mole
ules. It is

noted that this peak grows only after some minutes, whilst the 
ollapse of

the Flory stru
ture o

urs mu
h more rapidly.

The dependen
e of R

app

(here given for large angle) on temperature,

shown in Fig. 3, shows that the size of the polymer de
reases pre
ipitously

at 34:2

Æ

C . This rapid de
rease of apparent size arises as we 
ross the so{


alled � line where intera
tion between monomers units 
hanges from being

predominantly repulsive to attra
tive. With further in
rease of temperature

we �nd bulk phase{separation into the liquid and gas phases of the 
ollapsed

globules. In any 
ase, Fig. 3 shows that we �rst 
ross the theta line, and

then further in
rease of temperature leads us a
ross the phase{separation.

At large angles the in
rease in apparent size is quite small and Contin analy-

sis produ
es a single peak (Fig. 2.b), even after many hours. Thus, we believe

that for these 
onditions we have su

eeded in 
rossing the theta line, without


rossing the phase{transition.

For small s
attering angles (Fig. 3) one 
an see a similar e�e
t as we


ross the �-point, but here sin
e we probe longer length-s
ales we may expe
t

to see the remnant of 
riti
al s
attering from the proximate 
riti
al point.

Indeed, the apparent size as, determined from the 
umulant rises more rapidly

beyond the 
ollapse transition. Having dis
ussed the transition using the

traditional methods of analysis, we would now like to reanalyse the data

using the dynami
al mean-�eld theory dis
ussed earlier.

We shall 
onsider the approximate formula (26) and thereby redu
e the

number of parameters required for the �t. From this �t we obtain the dif-

fusion, D, and the �rst relaxation time, �

1

, at various wave ve
tors k and

temperatures. We have noted that the �

2

of the �t for the s
attering angles

40

Æ

, and 60

Æ

is parti
ularly good. The data for smaller angles are quite noisy,

7



in part due to dust, and gave relatively poor results.

Sin
e the di�usion 
onstant in our model is D ' k

B

T=(�

s

hRi), where

hRi = bN

�

be
ause we 
onsider only isolated mole
ules. Fig. 4 shows that

the average size hRi de
reases during the 
ollapse transition. However in

the model, the inverse �rst relaxation time is expressed by a similar relation

1=�

1

' k

B

T=(�

s

hRi

3

), and this is presented in Fig. 5. In fa
t, there is a


hara
teristi
 minimum at a temperature of about 32:4

Æ

C and a maximum

at 33:4

Æ

C. The �rst feature probably 
orresponds to the �-point and we


onje
ture that the slowing is due to the restri
tion of internal motions of

the polymer. It is possible that one is seeing an enhan
ement of the Cerf

e�e
t [10℄, but this is diÆ
ult to establish without extensive analysis of the


hain length dependen
e.

The maximum in Fig. 5 o

urs in the 
ollapsed phase and we assign it

to a 
ompetition between the redu
ing size of the globule, and the in
ipient


riti
al 
orrelations. Neither of these two time{s
ales is a

ounted for in the

model, but it would be straightforward to in
orporate the essential e�e
ts

of 
riti
ality along with 
ollapse [9℄. The slowing that we have assigned to

internal fri
tional or in
reased Cerf e�e
ts may be somewhat more diÆ
ult

to resolve, and remains one of the most un
ertain aspe
ts of the dynami
s

at 
ollapse. We may note that relation 1=�

1

' k

B

T=(�

s

R

app

), gives us an

estimate of the deviation of the apparent radius R

app

from the Gaussian

mean value hRi and thereby shows the weaknesses of the simple theory that

we have applied. In pra
ti
e the behaviour of �

1

is reminis
ent of the quantity

R

app

extra
ted from the Contin analysis and presented in Fig. 3.

At large wave ve
tors, 
orresponding to the s
attering angles 90

Æ

, and

120

Æ

, we have observed good agreement (Fig. 6) between the data and the

asymptoti
 formula (19).

The fa
t that (19) gives a reasonable des
ription of the phenomena in-

di
ates that we have rea
hed the universal k

3

regime 
hara
terised by the

behaviour of the 
oeÆ
ient (20). This agreement is quite good for the Flory


oil, worse for the �-point and still worse for the 
ollapsed globules. The

poor agreement for the 
ollapsed state is hardly surprising, given the limi-

tations of the theory in modelling a dense 
ompa
ted state. However, the

deviation in the theta state is probably indi
ative of an anomalous dynam-

i
s at the theta point. Thus, the deviation from the expe
ted exponent 2=3

in the plot log g / �t

2=3

near the �-point and beyond may well be related

to the long time-s
ale at theta 
onditions that we had earlier noted. From

s
aling 
onsiderations, a 
hange in the t -exponent would 
orrespond to a

8




hange of the log g(k) dependen
e, and this is 
learly observed in our data.

Su
h a breakdown indi
ates failure of the Gaussian approximation during the


ollapse transition, and invites the 
onstru
tion of a more suitable theory.

Brie
y then, in 
on
lusion, the theory is fairly satisfa
tory for a number

of questions, but 
annot des
ribe the anomalous dynami
s at the theta{


ondition, nor the long{time s
ale 
riti
al behaviour. The former is diÆ
ult

to improve, but important for development of this �eld, whilst the latter be

resolved by the modi�
ation of the theory [11℄.
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Figure Captions

Fig. 1. Plot of the apparent radius R

app

versus the inverse

wave ve
tor k

�1

for the Flory 
oil at T = 20

Æ

C (diamonds), and for

the 
ollapsed globule at T = 33:4

Æ

C (
rosses).

Fig. 2.a. Distribution (in arbitrary units) of the apparent

radius R

app

obtained from the Contin analysis at di�erent angles

for Flory 
oil.

Fig. 2.b. Distribution (in arbitrary units) of the apparent

radius R

app

obtained from the Contin analysis at di�erent angles

for 
ollapsed globule.

Fig. 3. Temperature dependen
e of the apparent radius R

app

obtained from the Contin analysis for di�erent wave ve
tors.

Fig. 4. Plot of the di�usion 
oeÆ
ient D versus the temper-

ature T at the s
attering angle 40

Æ

.

Fig. 5. Plot of the inverse �rst de
ay rate 1=�

1

versus the

temperature T at the s
attering angle 40

Æ

.

Fig. 6. Plot of the logarithm of dynami
 stru
ture fa
tor

g(k; t) versus the time t for the s
attering angles 90

Æ

(
rosses) and

120

Æ

(diamonds) and appropriate theoreti
al 
urves in the universal

k

3

regime.
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