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Abstract

We analyse data from the dynamic light scattering of poly(N-
isopropylacrilamide) in water solution as we cross the collapse transi-
tion. Experimental data are interpreted by the Gaussian self-consistent
Zimm model that takes into account two- and three-body excluded
volume effects, and Oseen hydrodynamic interactions, as well as by
the standard cumulant and Contin analyses. By fitting the dynamic
structure factor we extract the temperature dependence of the diffu-
sion coefficient D and the first relaxation time 7 across the collapse
transition for a range of scattering angles. The relaxation time 7
possesses a characteristic peak at about 32.4° C' due to slowing of the
internal motions of the polymer at the theta point, and a minimum
at 33.4° C. We interpret this as a combination of collapse closely
followed by the growth of critical correlations. At large scattering an-
gles we reach the universal k3 regime, and observe that this behaviour
vanishes at the onset of the collapse transition.
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1 Introduction

We here discuss some recent experimental work on the collapse transition of
Poly-N-isopropylacrylamide. This is a part of a program of research aimed at
elucidation of the equilibrium and non—equilibrium dynamics in the vicinity
of the collapse transition. We have used gel permeation chromatography to
isolate selected narrow fractions of polymer and studied the system using
dynamic light scattering.

With the systems that we have chosen it is possible to see the effects
of collapse prior to critical phase separation at the upper consolute point
[1]. As a result it becomes of interest to apply a self-consistent mean—field
theory to interpret the result of light scattering, up to the phase separation.
Reasonable agreement is achieved between theory and experiment. We find
that the Flory coil possesses internal modes that are relatively well fitted by
the theory, producing estimates of the size and internal relaxation time of
the coil. We also find a universal large momentum regime, and confirm the
stretched relaxation law that describes it.

At the collapse point we find anomalously long time-scales that vanish
just after collapse, and with slightly increased temperature we again find a
long time associated with critical fluctuations.

2 Experimental

The PNIPAM polymer was prepared with ammonium persulphate as initia-
tor in twice-distilled water under Ar. Ferrous sulfate in catalytic amounts
was found to produce a polymer of lower molecular weight. The reaction was
carried at out 25°C' resulting in a clear solution. Extremely high molecular
weights can be prepared without catalyst, but we do not discuss such mate-
rials in the present report. The raw product from the reaction consists in all
cases of a broad distribution of molecular weights, which we have separated
using gel permeation chromatography. Using large 77ml columns filled by
Sefacryl SH-500R gel we have found that if the concentration of the sample
loaded onto the column is kept sufficiently low, and the elution rate suffi-
ciently slow, the separation is relatively effective. Molecular weights have
been estimated from the literature [1],[2]. More details of the procedure are
given in reference [3]. Dynamic Light Scattering (DLS) was carried out using
a Coherent 5W tunable Ar* laser and Malvern PCS-4700 instrument with



256—channel correlator.

3 Model

The following ideas have been introduced in reference [4] as an approximate
means to model the dynamic light scattering of systems across the collapse
transition. We intend to test the theory, with the experiments described
above, thereby outlining its successes and limitations. We describe the poly-
mer in dilute solutions [5] by the Langevin equation
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where H(;’qo/ is the Oseen hydrodynamic tensor. Here x, denote the Fourie
transforms of spatial positions of beads
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For simplicity we may restrict ourselves by polymers satisfying cyclic bound-
ary conditions ,,»n = T, m = 0,... N — 1 since open and cyclic poly-
mers are equivalent for sufficiently large degree of polymerization N. Besides
the connectivity term proportional to k,, we take into account the excluded
volume interaction potential, V', that includes contributions from two- and
three—body effects,

V= Vé —|—VE), = U2 Z 5(Xm — Xm/) + us Z 5(Xm — xmf)é(xm/ — Xmu) s (3)
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where uy, ug are virial coefficients. The noise has the second order correlation
function
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In our self—consistent approach the dynamics of the full Langevin equation

(1) is approximated by the Gaussian stochastic ensemble with the Langevin
equation,

Corg (1) = —AVy(t)ag + ng (t) (5)

and a diagonal correlation function of the form (4) with Hg‘q?" = ¢t 5;‘(10,".
Here the potential, AV, (¢) and the friction, (, are unknown functions deter-
mined from the self—consistency equation.



This equation is simplified for small ¢, when we can seek solutions with
the properties,

A‘/;] = NAilg2ﬂ y g = W , (6)

where A is some unknown constant. Let us define parameters b and v by the
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then v =  —1/2 and b ~ /AkgT. As we have shown [4], for small ¢ the
self—consistency equation reduces to the dominant balance equation, from
which we may extract three different regimes. When us, > 0 we find the
balance between the order ¢*> and the u, term giving the Flory exponent
v =3/5and b* ~ (uz/k)*®. When uy = 0 we have a balance between ¢* and
the us term, and so-called f-point results: v = 1/2, b*> ~ (u3/k)'/*. Finally,
when us < 0, we are in a collapsed state with balance between the two—body
and three-body terms giving v = 1/3 and b* ~ (—u3/uz)??. Finally Oseen
hydrodynamic interactions lead to the friction of the form

Co = by N"g" " (8)
The correlation functions are found to be for ¢ # 0
3kgT
(Ix, 7 (1)) = <|Xq|2(0)>:A—V;1’ (9)

(x4(0)x,(t) ) = exp (—Ac?t> (%417 (0) ), (10)

and for ¢ = 0 diffusive component
(Ix() [*) = (Ix0(0) [*)+6Dt, (11)
(x0(t)x0(0) ) = (|x0(0) "), (12)

where D = kgT'/(y is the diffusion constant. Thus the relaxation times are
expressed as 7, = (;/AV, and in this model are

kT
1/7, ~ —q". 13
7= (13)
By definition the dynamic structure factor is,
1 .
gk, t) = = 3 (expik(xa(t) = x(0))). (14)



The wave vector k is related to the wave length A, refraction index n and
scattering angle 6 as follows,
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In the Gaussian approximation the structure factor takes the form,
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Now we extract the contribution of the zero diffusive mode from the remain-
ing internal modes and substitute the averages,

g(kat) = gO(kat)gint(kat)a (16)

gk, t) = exp(-k’Dt), (17)
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gint(k, 1) = ann;eXp( k ;)Avq(l Cos N e )| (18)

It is possible to consider two different regimes that result in further sim-
plifications. In the limit k26> N? << 1 one can neglect the contribution of
internal modes, and the structure factor will be given entirely by the diffu-
sion part go(k, ). In the opposite case, k?6>N?” >> 1, the contribution of
internal modes becomes essential. In fact for large N, their distribution is
almost quasi—continuous, so that we may convert the sums into integrals. If
we consider sufficiently large times also, the formula takes especially simple
form

gint (k1) = g(k, 0) exp(=H(0) (Lt)*/?) (19)
Ty~ kz’Tﬁ, (20)

where H(0) = —2%+1/7T(283)/(23/?T(5/3)vT(—v)) and Tyt >> 1.
Another quantity of interest is the cumulant or logarithmic derivative at
zero time. For large k£ we find by simple differentiation,
d kT
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The value C'(v) may be independently expressed in terms of the static struc-
ture factor [6],

Cv) k° = g(k, 0)‘1/ (Qd:)g <k2 _q(sz)2> 9(k +q,0), (22)

and we note that it is k independent if we use the asymptotic formula for
20’ N? >> 1,

g(k,0) ~ (kb)~'/. (23)

It is interesting to observe that in this regime C(v) does not contain any
polymer specific parameters, and it is therefore referred to as the universal
k3 regime.

It is possible to derive another representation for the dynamic structure
factor valid for any k. In a previous work [4] we have derived the formula
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where Gy(t) = §(x_4(0)x,()) = 4F exp(—541), I,(2) are modified Bessel

functions and summation is restricted by the condition

Such a representation is useful for asymptotics at large ¢ when it is enough
to consider only leading terms in the series (24). In the simplest case, we
may retain only the contribution of the first internal mode and the formula
then reduces to simply,

Gint (K, 1)/ gint(k, 0) o In(K*G1 (1)) . (26)

4 Results and Discussion

To interpret the experimental data and test the theory we have fitted the
correlation function by the theoretical formulae for the dynamic structure
factor of various samples. Here we shall report only on one case which is
somewhat representative of our findings. Thus, the following data are for
a polymer of approximate molecular weight 20 * 10°. In Fig. 1 we show
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the dependence of the apparent hydrodynamic radius R,,, upon the inverse
modulus of scattering vector, k = %% sin(%), where A is the wavelength of
the incident light, ng the refractive index of solvent, and # the scattering an-
gle. R,,, was obtained from the first cumulant of the correlation function [7].
The strong k dependence of R,,, at 20°C arises from the internal motions
of the polymer, these becoming apparent when é < R, (R,-radius of gyra-
tion). The Contin analysis [8] for this polymer, shown in Fig. 2.a, exhibits
a single peak at low angles in the coil state a second peak corresponding to
internal modes emerging only at large scattering angles. We note the rather
interesting phenomenon illustrated in Fig. 2.b for the collapsed state. Here
the assignment is reversed, so that the peak at larger length—scales is inter-
preted not as diffusion, but correlation between collapsed molecules. It is
noted that this peak grows only after some minutes, whilst the collapse of
the Flory structure occurs much more rapidly.

The dependence of R,,, (here given for large angle) on temperature,
shown in Fig. 3, shows that the size of the polymer decreases precipitously
at 34.2°C . This rapid decrease of apparent size arises as we cross the so—
called € line where interaction between monomers units changes from being
predominantly repulsive to attractive. With further increase of temperature
we find bulk phase-separation into the liquid and gas phases of the collapsed
globules. In any case, Fig. 3 shows that we first cross the theta line, and
then further increase of temperature leads us across the phase—separation.
At large angles the increase in apparent size is quite small and Contin analy-
sis produces a single peak (Fig. 2.b), even after many hours. Thus, we believe
that for these conditions we have succeeded in crossing the theta line, without
crossing the phase—transition.

For small scattering angles (Fig. 3) one can see a similar effect as we
cross the #-point, but here since we probe longer length-scales we may expect
to see the remnant of critical scattering from the proximate critical point.
Indeed, the apparent size as, determined from the cumulant rises more rapidly
beyond the collapse transition. Having discussed the transition using the
traditional methods of analysis, we would now like to reanalyse the data
using the dynamical mean-field theory discussed earlier.

We shall consider the approximate formula (26) and thereby reduce the
number of parameters required for the fit. From this fit we obtain the dif-
fusion, D, and the first relaxation time, 77, at various wave vectors k and
temperatures. We have noted that the x? of the fit for the scattering angles
40°, and 60° is particularly good. The data for smaller angles are quite noisy,



in part due to dust, and gave relatively poor results.

Since the diffusion constant in our model is D ~ kgT/(ns(R)), where
(R) = DN because we consider only isolated molecules. Fig. 4 shows that
the average size (R) decreases during the collapse transition. However in
the model, the inverse first relaxation time is expressed by a similar relation
1/7 ~ kgT/(ns(R)?), and this is presented in Fig. 5. In fact, there is a
characteristic minimum at a temperature of about 32.4° C' and a maximum
at 33.4°C. The first feature probably corresponds to the #-point and we
conjecture that the slowing is due to the restriction of internal motions of
the polymer. It is possible that one is seeing an enhancement of the Cerf
effect [10], but this is difficult to establish without extensive analysis of the
chain length dependence.

The maximum in Fig. 5 occurs in the collapsed phase and we assign it
to a competition between the reducing size of the globule, and the incipient
critical correlations. Neither of these two time—scales is accounted for in the
model, but it would be straightforward to incorporate the essential effects
of criticality along with collapse [9]. The slowing that we have assigned to
internal frictional or increased Cerf effects may be somewhat more difficult
to resolve, and remains one of the most uncertain aspects of the dynamics
at collapse. We may note that relation 1/7 ~ kgT/(nsRapp), gives us an
estimate of the deviation of the apparent radius R,,, from the Gaussian
mean value (R) and thereby shows the weaknesses of the simple theory that
we have applied. In practice the behaviour of 7y is reminiscent of the quantity
R,,, extracted from the Contin analysis and presented in Fig. 3.

At large wave vectors, corresponding to the scattering angles 90°, and
120°, we have observed good agreement (Fig. 6) between the data and the
asymptotic formula (19).

The fact that (19) gives a reasonable description of the phenomena in-
dicates that we have reached the universal k* regime characterised by the
behaviour of the coefficient (20). This agreement is quite good for the Flory
coil, worse for the #-point and still worse for the collapsed globules. The
poor agreement for the collapsed state is hardly surprising, given the limi-
tations of the theory in modelling a dense compacted state. However, the
deviation in the theta state is probably indicative of an anomalous dynam-
ics at the theta point. Thus, the deviation from the expected exponent 2/3
in the plot log g o< —t?/3 near the #-point and beyond may well be related
to the long time-scale at theta conditions that we had earlier noted. From
scaling considerations, a change in the ¢ -exponent would correspond to a



change of the log g(k) dependence, and this is clearly observed in our data.
Such a breakdown indicates failure of the Gaussian approximation during the
collapse transition, and invites the construction of a more suitable theory.

Briefly then, in conclusion, the theory is fairly satisfactory for a number
of questions, but cannot describe the anomalous dynamics at the theta—
condition, nor the long—time scale critical behaviour. The former is difficult
to improve, but important for development of this field, whilst the latter be
resolved by the modification of the theory [11].
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Figure Captions

Flg 1. Plot of the apparent radius R,,, versus the inverse
wave vector k! for the Flory coil at 7' = 20° C' (diamonds), and for
the collapsed globule at 7' = 33.4° C' (crosses).

Flg 2.a. Distribution (in arbitrary units) of the apparent
radius R,,, obtained from the Contin analysis at different angles
for Flory coil.

Flg 2.b. Distribution (in arbitrary units) of the apparent
radius R,,, obtained from the Contin analysis at different angles
for collapsed globule.

Flg 3. Temperature dependence of the apparent radius R,
obtained from the Contin analysis for different wave vectors.

Flg 4. Plot of the diffusion coefficient D versus the temper-
ature 7' at the scattering angle 40°.

Flg 0. Plot of the inverse first decay rate 1/7 versus the
temperature 7" at the scattering angle 40°.

Flg 6. Plot of the logarithm of dynamic structure factor
g(k,t) versus the time ¢ for the scattering angles 90° (crosses) and
120° (diamonds) and appropriate theoretical curves in the universal
k* regime.
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