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Abstrat

We analyse data from the dynami light sattering of poly(N-

isopropylarilamide) in water solution as we ross the ollapse transi-

tion. Experimental data are interpreted by the Gaussian self{onsistent

Zimm model that takes into aount two- and three{body exluded

volume e�ets, and Oseen hydrodynami interations, as well as by

the standard umulant and Contin analyses. By �tting the dynami

struture fator we extrat the temperature dependene of the di�u-

sion oeÆient D and the �rst relaxation time �

1

aross the ollapse

transition for a range of sattering angles. The relaxation time �

1

possesses a harateristi peak at about 32:4

Æ

C due to slowing of the

internal motions of the polymer at the theta point, and a minimum

at 33:4

Æ

C. We interpret this as a ombination of ollapse losely

followed by the growth of ritial orrelations. At large sattering an-

gles we reah the universal k

3

regime, and observe that this behaviour

vanishes at the onset of the ollapse transition.
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1 Introdution

We here disuss some reent experimental work on the ollapse transition of

Poly-N-isopropylarylamide. This is a part of a program of researh aimed at

eluidation of the equilibrium and non{equilibrium dynamis in the viinity

of the ollapse transition. We have used gel permeation hromatography to

isolate seleted narrow frations of polymer and studied the system using

dynami light sattering.

With the systems that we have hosen it is possible to see the e�ets

of ollapse prior to ritial phase separation at the upper onsolute point

[1℄. As a result it beomes of interest to apply a self{onsistent mean{�eld

theory to interpret the result of light sattering, up to the phase separation.

Reasonable agreement is ahieved between theory and experiment. We �nd

that the Flory oil possesses internal modes that are relatively well �tted by

the theory, produing estimates of the size and internal relaxation time of

the oil. We also �nd a universal large momentum regime, and on�rm the

strethed relaxation law that desribes it.

At the ollapse point we �nd anomalously long time{sales that vanish

just after ollapse, and with slightly inreased temperature we again �nd a

long time assoiated with ritial utuations.

2 Experimental

The PNIPAM polymer was prepared with ammonium persulphate as initia-

tor in twie-distilled water under Ar. Ferrous sulfate in atalyti amounts

was found to produe a polymer of lower moleular weight. The reation was

arried at out 25

Æ

C resulting in a lear solution. Extremely high moleular

weights an be prepared without atalyst, but we do not disuss suh mate-

rials in the present report. The raw produt from the reation onsists in all

ases of a broad distribution of moleular weights, whih we have separated

using gel permeation hromatography. Using large 77ml olumns �lled by

Sefaryl SH-500R gel we have found that if the onentration of the sample

loaded onto the olumn is kept suÆiently low, and the elution rate suÆ-

iently slow, the separation is relatively e�etive. Moleular weights have

been estimated from the literature [1℄,[2℄. More details of the proedure are

given in referene [3℄. Dynami Light Sattering (DLS) was arried out using

a Coherent 5W tunable Ar

+

laser and Malvern PCS-4700 instrument with
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256{hannel orrelator.

3 Model

The following ideas have been introdued in referene [4℄ as an approximate

means to model the dynami light sattering of systems aross the ollapse

transition. We intend to test the theory, with the experiments desribed

above, thereby outlining its suesses and limitations. We desribe the poly-

mer in dilute solutions [5℄ by the Langevin equation
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where u
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are virial oeÆients. The noise has the seond order orrelation

funtion
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In our self{onsistent approah the dynamis of the full Langevin equation

(1) is approximated by the Gaussian stohasti ensemble with the Langevin

equation,
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and a diagonal orrelation funtion of the form (4) with H
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0
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.

Here the potential, �V

q

(t) and the frition, �

q

are unknown funtions deter-

mined from the self{onsisteny equation.
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This equation is simpli�ed for small q, when we an seek solutions with

the properties,
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q
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; (6)
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then � = � � 1=2 and b '

p

Ak

B

T . As we have shown [4℄, for small q the

self{onsisteny equation redues to the dominant balane equation, from
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The orrelation funtions are found to be for q 6= 0
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and for q = 0 di�usive omponent
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By de�nition the dynami struture fator is,
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The wave vetor k is related to the wave length �, refration index n and

sattering angle � as follows,
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Now we extrat the ontribution of the zero di�usive mode from the remain-

ing internal modes and substitute the averages,
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It is possible to onsider two di�erent regimes that result in further sim-

pli�ations. In the limit k

2

b

2

N

2�

<< 1 one an neglet the ontribution of

internal modes, and the struture fator will be given entirely by the di�u-

sion part g

0

(k; t). In the opposite ase, k

2

b
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N

2�

>> 1, the ontribution of

internal modes beomes essential. In fat for large N , their distribution is

almost quasi{ontinuous, so that we may onvert the sums into integrals. If

we onsider suÆiently large times also, the formula takes espeially simple

form
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Another quantity of interest is the umulant or logarithmi derivative at
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The value C(�) may be independently expressed in terms of the stati stru-

ture fator [6℄,
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Z

dq

(2�)

3

 

k

2

� (k
^
q)

2

q

2

!

g(k+ q; 0) ; (22)

and we note that it is k independent if we use the asymptoti formula for

k
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It is interesting to observe that in this regime C(�) does not ontain any

polymer spei� parameters, and it is therefore referred to as the universal

k

3

regime.

It is possible to derive another representation for the dynami struture

fator valid for any k. In a previous work [4℄ we have derived the formula
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Suh a representation is useful for asymptotis at large t when it is enough

to onsider only leading terms in the series (24). In the simplest ase, we

may retain only the ontribution of the �rst internal mode and the formula

then redues to simply,

g

int
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int

(k; 0) / I
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2
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4 Results and Disussion

To interpret the experimental data and test the theory we have �tted the

orrelation funtion by the theoretial formulae for the dynami struture

fator of various samples. Here we shall report only on one ase whih is

somewhat representative of our �ndings. Thus, the following data are for

a polymer of approximate moleular weight 20 � 10

6

. In Fig. 1 we show
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the dependene of the apparent hydrodynami radius R

app

upon the inverse

modulus of sattering vetor, k =

4�n

0

�

sin(

�

2

), where � is the wavelength of

the inident light, n

0

the refrative index of solvent, and � the sattering an-

gle. R

app

was obtained from the �rst umulant of the orrelation funtion [7℄.

The strong k dependene of R

app

at 20

o

C arises from the internal motions

of the polymer, these beoming apparent when

1

k

� R

g

(R

g

{radius of gyra-

tion). The Contin analysis [8℄ for this polymer, shown in Fig. 2.a, exhibits

a single peak at low angles in the oil state a seond peak orresponding to

internal modes emerging only at large sattering angles. We note the rather

interesting phenomenon illustrated in Fig. 2.b for the ollapsed state. Here

the assignment is reversed, so that the peak at larger length{sales is inter-

preted not as di�usion, but orrelation between ollapsed moleules. It is

noted that this peak grows only after some minutes, whilst the ollapse of

the Flory struture ours muh more rapidly.

The dependene of R

app

(here given for large angle) on temperature,

shown in Fig. 3, shows that the size of the polymer dereases preipitously

at 34:2

Æ

C . This rapid derease of apparent size arises as we ross the so{

alled � line where interation between monomers units hanges from being

predominantly repulsive to attrative. With further inrease of temperature

we �nd bulk phase{separation into the liquid and gas phases of the ollapsed

globules. In any ase, Fig. 3 shows that we �rst ross the theta line, and

then further inrease of temperature leads us aross the phase{separation.

At large angles the inrease in apparent size is quite small and Contin analy-

sis produes a single peak (Fig. 2.b), even after many hours. Thus, we believe

that for these onditions we have sueeded in rossing the theta line, without

rossing the phase{transition.

For small sattering angles (Fig. 3) one an see a similar e�et as we

ross the �-point, but here sine we probe longer length-sales we may expet

to see the remnant of ritial sattering from the proximate ritial point.

Indeed, the apparent size as, determined from the umulant rises more rapidly

beyond the ollapse transition. Having disussed the transition using the

traditional methods of analysis, we would now like to reanalyse the data

using the dynamial mean-�eld theory disussed earlier.

We shall onsider the approximate formula (26) and thereby redue the

number of parameters required for the �t. From this �t we obtain the dif-

fusion, D, and the �rst relaxation time, �

1

, at various wave vetors k and

temperatures. We have noted that the �

2

of the �t for the sattering angles

40

Æ

, and 60

Æ

is partiularly good. The data for smaller angles are quite noisy,
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in part due to dust, and gave relatively poor results.

Sine the di�usion onstant in our model is D ' k

B

T=(�

s

hRi), where

hRi = bN

�

beause we onsider only isolated moleules. Fig. 4 shows that

the average size hRi dereases during the ollapse transition. However in

the model, the inverse �rst relaxation time is expressed by a similar relation

1=�

1

' k

B

T=(�

s

hRi

3

), and this is presented in Fig. 5. In fat, there is a

harateristi minimum at a temperature of about 32:4

Æ

C and a maximum

at 33:4

Æ

C. The �rst feature probably orresponds to the �-point and we

onjeture that the slowing is due to the restrition of internal motions of

the polymer. It is possible that one is seeing an enhanement of the Cerf

e�et [10℄, but this is diÆult to establish without extensive analysis of the

hain length dependene.

The maximum in Fig. 5 ours in the ollapsed phase and we assign it

to a ompetition between the reduing size of the globule, and the inipient

ritial orrelations. Neither of these two time{sales is aounted for in the

model, but it would be straightforward to inorporate the essential e�ets

of ritiality along with ollapse [9℄. The slowing that we have assigned to

internal fritional or inreased Cerf e�ets may be somewhat more diÆult

to resolve, and remains one of the most unertain aspets of the dynamis

at ollapse. We may note that relation 1=�

1

' k

B

T=(�

s

R

app

), gives us an

estimate of the deviation of the apparent radius R

app

from the Gaussian

mean value hRi and thereby shows the weaknesses of the simple theory that

we have applied. In pratie the behaviour of �

1

is reminisent of the quantity

R

app

extrated from the Contin analysis and presented in Fig. 3.

At large wave vetors, orresponding to the sattering angles 90

Æ

, and

120

Æ

, we have observed good agreement (Fig. 6) between the data and the

asymptoti formula (19).

The fat that (19) gives a reasonable desription of the phenomena in-

diates that we have reahed the universal k

3

regime haraterised by the

behaviour of the oeÆient (20). This agreement is quite good for the Flory

oil, worse for the �-point and still worse for the ollapsed globules. The

poor agreement for the ollapsed state is hardly surprising, given the limi-

tations of the theory in modelling a dense ompated state. However, the

deviation in the theta state is probably indiative of an anomalous dynam-

is at the theta point. Thus, the deviation from the expeted exponent 2=3

in the plot log g / �t

2=3

near the �-point and beyond may well be related

to the long time-sale at theta onditions that we had earlier noted. From

saling onsiderations, a hange in the t -exponent would orrespond to a

8



hange of the log g(k) dependene, and this is learly observed in our data.

Suh a breakdown indiates failure of the Gaussian approximation during the

ollapse transition, and invites the onstrution of a more suitable theory.

Briey then, in onlusion, the theory is fairly satisfatory for a number

of questions, but annot desribe the anomalous dynamis at the theta{

ondition, nor the long{time sale ritial behaviour. The former is diÆult

to improve, but important for development of this �eld, whilst the latter be

resolved by the modi�ation of the theory [11℄.
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Figure Captions

Fig. 1. Plot of the apparent radius R

app

versus the inverse

wave vetor k

�1

for the Flory oil at T = 20

Æ

C (diamonds), and for

the ollapsed globule at T = 33:4

Æ

C (rosses).

Fig. 2.a. Distribution (in arbitrary units) of the apparent

radius R

app

obtained from the Contin analysis at di�erent angles

for Flory oil.

Fig. 2.b. Distribution (in arbitrary units) of the apparent

radius R

app

obtained from the Contin analysis at di�erent angles

for ollapsed globule.

Fig. 3. Temperature dependene of the apparent radius R

app

obtained from the Contin analysis for di�erent wave vetors.

Fig. 4. Plot of the di�usion oeÆient D versus the temper-

ature T at the sattering angle 40

Æ

.

Fig. 5. Plot of the inverse �rst deay rate 1=�

1

versus the

temperature T at the sattering angle 40

Æ

.

Fig. 6. Plot of the logarithm of dynami struture fator

g(k; t) versus the time t for the sattering angles 90

Æ

(rosses) and

120

Æ

(diamonds) and appropriate theoretial urves in the universal

k

3

regime.
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