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Phase diagram of a Gaussian random copolymer
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We study the stationary limit of the self-consistent kinetic equations derived earlier by us for a model of a
Gaussian random copolymer. The phase diagram of the model contains five different states separated by the
collapse, glass, and folding “transitions.” We perform a finite-size chain analysis and find that the kinetic
accessibility of the folded state is strongly impeded for sufficiently long chains. For the high-density globule
we propose a simplified treatment in terms of the three main order parameters. This approximation yields a
qualitatively correct phase diagram and allows us to demonstrate the thermodynamic stability of the folded
state.[S1063-651X97)08005-1

PACS numbsdrs): 36.20-r, 87.15.By

[. INTRODUCTION obtain a set of the equilibrium equations for determination of
the free energy minima. It is interesting to note that this
Studying the conformational transitions in polymers pos-approach is an alternative to a more standard replica spin-
sessing quenched random amphiphilicity is important forglass method13,14. In fact, in Sec. Il C of Ref[10] we
many applications in both synthetic and biological macromo-have shown that these equilibrium equations are the minima
lecular system§1—3]. There is a view in the scientific com- conditions of the variational free energy functional in a ver-
munity that elucidation of the conformational states ofsion of the Gibbs-Bogoliubov approach. We choose the trial
simple models of proteins, along with their attendant kineticHamiltonian dependent on the disorder variables and explic-
laws, would be a crucial step in understanding protein folddtly average the variational free energy functional over the
ing and misfoldind 2]. One expression of the protein folding quenched disorder. Because we average the free energy
problem is to determine how a one-dimensional primary serather than the partition function, there is no need to apply
guence of amino acid residues relates to the threethe replica trick. In doing so, however, we have to use an
dimensional structure of the folded protein, and to deducepproximation that is justified only for sufficiently small dis-
the kinetics of folding process that brings a statistical enpersions of disordeA. Thus it would be of interest to com-
semble of extended coils into an essentially unique nativgpare some of our results with those of more standard replica
state. Much is written about this fundamental problem anctalculations. We have done so in REE5], which addresses
we refer the reader to many excellent monographs, reviewsimilar issues by a replica variational approach, and found a
and original works on protein foldin¢see Refs[4-9], and fair agreement between the two approaches in a range of
references thereinWe mention this by way of motivation. We have not been able to reach higher values of the disper-
However, we need not enlarge the discussion here in owion of disorder in the replica formalism due to technical
rather short paper devoted to the coarse-grained statisticdlfficulties in numerical solution of many-dimensional mini-
mechanical description of a Gaussian random copolymer. max problem there. The present approach allows us to elimi-
In our previous work in Ref[10] we have proposed a nate such a limitation and to study the whole phase diagram
nonequilibrium Gaussian self-consistent method for studyin@f the system.
kinetics of a model based on the Edwards-type effective free At this point it is important to emphasize that the kinetics
energy functional with quenched disorder in the monomesfter a quench from a homopolymerlike initial state auto-
two-body interactions. The method has the advantages thatfinatically preserves perturbativeness of the solution. Deter-
is valid for kinetics as well as for equilibrium, and that it is mination of the equilibrium transition curves is a more deli-
suitable for description of both the fractal coil and the con-cate problem. The cause of our concern is quite clear.
densed globular phases. In this sense it is a unique approachpplication of additional closure relations for the higher-
though it does have its own weakness to which we shalbrder correlation functions may, in principle, violate the
come in Sec. lll. variational bound for the free energy in the Gibbs-
Previous numerical analysis of the self-consistent equaBogoliubov scheme. The error incurred thereby is of order
tions resulted in what we believe is the correct picture ofA“in our case. Thus we may expect the current method to be
kinetic folding pathway pertinent to the general features disinaccurate in predicting the transitions curves if the free en-
covered experimentally in a number of proteins and disergy undergoes a change only in the ordér Nevertheless,
cussed in Refd11,12. Significantly, the method predicted the kinetic information, such as position of the spinodal
the existence of a nonfully compacted kinetic intermediatecurves, should, in principle, remain reliable.
possessing frozen and partially misfolded structure with a Here we address the equilibrium issues of the problem in
significant number of hydrophobic units exposed on the exthe framework of our method. First of all, we study the com-
terior of the globule. plete phase diagram and consider the behavior of the relevant
By taking the stationary limit of the kinetic equations we observables in different phases. This information is comple-
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mentary to the results of RefL0]. Furthermore, we analyze

the spinodal and transition curves of the folding transition for Hums= Hsol Ral+ Hinod Xnl— 2 108(Xn— Ra),
different chain lengths. This elucidates the finite-size depen- na

dence of the folding transition. Later on we propose a simyhich includes the terms describing the solvent degrees of
plified ansatz in terms of the system size, the phase SeparfizedomR,, the monomer degrees of freedofy, e.g., in
tion, and glass order parameters that can be obtained frofde form of Eq.(3), and a contact monomer-solvent interac-
the complete set of equations in the limit of the dense globsjq,  characterized by thenth monomer hydrophobic
L_lle. We show that this gives a qualitatively correct descrip'strengthsl . respectively. A simple way of deriving E¢@),

tion of the three dense globular states. As an important d,eproposed by Garel and Orlafid], would be then to explic-

velop_ment, this approximation confirms the thermodynamlqﬂy use the solution incompressibility condition,
stability of the folded state for large chain lengths. Finally,

we consider the possibility of improving the equilibrium free

energy by including higher-order corrections renormalizing Prmo )+ Psol(Y) = 2 8(y—Xp)+ > 8(y—R,)

the second virial coefficient. We find that there is a unique " 2

value of the fourth-order correction coefficiemt that allows = po=const, (5)

one to obtain the freezing transition curve.
in order to integrate out the solvent degrees of freedom. This

Il. THE SELF-CONSISTENT EQUATIONS yields the partition functiorZ .= Z¢,Z, where the effect of

the solvent influence on the monomer degrees of freedom

In this section we shall briefly define the model and writeappears iz only via the following term in the effective free
down the self-consistent equations derived in R&6]. We  energy functional:

also introduce necessary notations and define the important
observables. For further explanations and details we refer the N
reader to Ref[10]. H= Z, [Us+ (I Th)]o(Xn=Xpr) +--- (6)
It is convenient to use the Fourier transformgs of the nen
monomer coordinateX,, in the chain indexsee the Appen-  Now, by introducingu,=u,+1 andA,=1,—1, wherel is
dix). Note that we use letters of different case in order tothe mean value of,,, we obtain Eq(4).
distinguish between the two sets of coordinates. Description The random variabled ,,, and consequently their Fourier
of kinetics of the model is based upon the Langevin equatransforms),,, are assumed to possess a Gaussian distribu-
tion, tion with the second momentum,

d IH — = —
gaxq(t):_ X _+7]q(t), (1) )\q)\q,—A25Q+q,’o, A2=A2/N, (7)
—-q

whereA has the meaning of the dispersion of disorder. Here
(ma(t) n“:(t’))= 2kgTLSqsqr 00 S(t—t), (2 and throughout we use the angular brackétsto denote the
q ’ statistical averages over the noise and initial ensemble of
where{=N(¢, ¢, is the bare friction constant, aidlis the  monomer positions X(t=0)} and the overbaA to denote
degree of polymerization. For the purpose of this paper weverages over the quenched distribution of disofdgr
may disregard the hydrodynamic effect for it only affects In our previous work in Ref[10] we have derived in
time-dependent characteristics. some approximation closed kinetic equations for the two
The model accounts for the connectivity of the chain, ex-types of correlation functions. Thus let us introduce the
cluded volume effects, and the random amphiphilicity of themean-squared amplitudes of the normal modes,
monomers. We choose the Edwards-type effective free L )
energy functionalH=H +Hgs, containing the homopoly- Fo()=Fq(0),  Fq(t)=5(Ixgl*(1)), ®)
meric H and the disordereH 45 terms, respectively,

and the disorder correlation functions,

L-1 1
H=5 2 Ko X?+ 3 0> TT 60— X, ), Cap(V)=Paplt). - Japl V)= 3ha-p{Xo(065(0)- O
n L>2 1 i+1

i=1
fmy 1 3) These satisfy the following self-consistent equations:
1 “m—zf‘“‘@ — 10
Hdis:im%z (Aml+Am2)5(Xm1_xm2)- 4 2 dt q( )__§ q(;x_]:q 5 Pap IPqp , (10
Here « is the connectivity constanty, are the virial coeffi- d 2 dA A\ — dA
cients of the excluded volume interactions, and summatior§ g; Pap()="73 | ¢ap| 27 + 7| T AN(Fq+ Fp) ’
dt 3 0Fq  IF, IPqp

over {m} includes all values of indices,,...,m_ with m
FMipq. (12)

It is worthwhile to comment here on the origin of the term where A is the variational free energy functiond7]. This
(4) of the effective free energy functional that is linear in theform of the kinetic equations has a transparent meaning. In-
disorder variablegl6]. One usually proceeds from the effec- deed, the kinetics could be understood as a motion represent-
tive free energy functional, ing the flow of the whole statistical ensemble in the phase
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FIG. 1. The phase diagram of the model in
terms of the second virial coefficient, (in units
ksT£%), and the dispersion of disordes (in
unitskg T£3). Solid lines represent first-order-like
transitions, dashed lines represent continuous
transitions, and dotted lines represent “spinodal”
curves. The roman numerals correspond conse-
quently to Flory coil, liquidlike globule, ran-
dom coil, “glassy” phase, and folded globule.
Continuous transition curves are determined by
the points of the fastest change of respective or-
der parametere?2 for the collapse transition and
RZRZ(C) for the glass transition Here and below
N 30 anduz=10 (in unitskgTLS).

space of the averaged dynamic variables. The motion is gov@ther definitions for Eq(13) may be found in the Appendix.
erned by the gradients and is directed towards the global free To understand the phase behavior of the system we need

energy minimum.
The variational free energyl=£— TS contains the “en-
tropic” part

3A~2

3 ‘Pqp 2
“Ke 5 - +
S=kg 5 ; Iog]—'q Kg % }_}_ O(A%Y), (12)
and the mean energy=(H),
5 3k 1 1
— Do+ u + U
Nz Pl g g o
15 Py .k
__1Ek FD g 2 o
w5 1_5Z Yo(Ky,Kp) ~a §z Y;(ky,ks)
38 &, Yolki ko)™ 22 & Yo(ky ko)™

13

wherel, = (27) 3L~ /Z5 andA=(27) 32A. Note, how-
ever, that from the point of view of the Flory theory the

to identify the important order parameters. First, the overall
size of the chain is given by the averaBé of the squared
radius of gyration,

R2=D Fy.

q#0

(18

Second, the glassy behavior is reflected in the cumulant of
the squared radii of gyratiofi4]
RERECI =1 2Y?, (19

Y= .
qZ’o ®aq

And third, the phase-separation order parameter is

P = ®qp-

a#p, q,p#0
(20)

6—N2 2 (Am+ Amr - 2)\0)Dmmr =
mm'’

Note that for just two types of monomersA” and “ B”
with equal concentrations,=ng=3 the latter reduces sim-
ply to

spring term has an entropic origin and the proper conforma-

tional entropy should be defined EES]

(14

Here we should also introduce the monomer spatial correlaeqUI

tions,

Dynmw=Dmn, Dmmw= %<(Xm_ Xm’)2>v (15
and their cumulants,
DmmrDmnm/(C)EDmmrDmr/m/_ Dmmr Dm//mr. (16)

W =[R3(B)—R;(A)]/2. (21)

Ill. PHASE DIAGRAM OF THE MODEL

Here we present results of the numerical analysis of the
librium limit of Egs.(10) and (11) obtained by setting
the time derivatives to zero. Moreover, we require the ex-
pressiong12) and (13) for the free energy itself.

Traditionally [19—21] we work with the following com-
binations £= (kg T/«)'? and 7=¢,,/x as the units of size
and time in the system. In the following, we have used the
following particular choice of parameterskgT=1, k=1,

and ¢,=1, which fix £ and 7 to be equal to unity.

One can prove that these functions depend onIy on the dif- The phase diagram is presented in Fig. 1. PliBseorre-

ferences of their indicek;=m—m’ andk,=m"—m’

17

Dymw=Dx, Dmmw I:)m”m’(C)E Pklkz'

sponds to the extended Flory coil. This normal homopoly-
merlike coil with increasing dispersion of disorder becomes
what we call a random coflll ) after a rather soft continuous
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FIG. 2. Plots of observables vs the dispersion
of disorderA (in units kgT£3) for different val-
ues ofu, (in units kgTLy): (a) u?=0; (b) u,
=—16; and(c) u,=—35. In (a) we present the
conformational entropy changeAS=S,(A)
—S:(0) (in unitskgT); in (b), the mean-squared
radius of gyratiorRS (in units £?); and in(c), the
glass order paramet&;R5(® (in units £%).
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transition. On passing this transition the squared radius dthe average two-body interaction is repulsive, but there are
gyration Rg decreases somewhat while the *“glassy” some strongly attractive units in the chain that can bind to-
order parameteRgRg(C) increases significantly. We believe gether forming loops. It is quite possible that this only leads
that phase(lll) is composed of relatively open coils with to a renormalization of the Kuhn length and does not affect
numerous loops. Indeed, in this region of the phase diagrarihe fractal dimension of the coil. However, at present our
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TABLE I. Values of the dispersion of disorder at the spinodg), and the critical curved,,, respec-
tively, for the folding transition.

N 20 30 40 50 60
Agp, U;=0 28.9 34.2 458 > 400 > 600
Ay, Up=0 28.9 31.9 345 36.8 39.1
Agp, Up=—25 17.82 25.96 35.44 77.43 >600
Ay, Up=—25 15.7 17.0 18.3 19.5 20.6
Agp, Up=—50 41.5 59.2 79.1 196 >600
Ay, Uy=—50 26.4 27.4 28.5 29.4 30.4

current numerical procedure was limited to relatively shortfrozen globule is akin to thenoltenglobule and the folded
polymers and did not allow us to resolve this question. Thigjlobule to thenativestate in proteins, respectively. This con-
is a very interesting problem and we hope to return to itgecture is somewhat justified also by the kinetics of the fold-
study at a later stage. ing process discussed in R¢LO].

The collapse transitiorithe curve separating | and llI An interesting observation here is that there is a pro-
from all other phasgss second order in the whole range of nounced region of the metastable frozen globule. The kinetic
A. Beginning from the homopolymerlike cofl) for small  evolution after a rapid quench to the region bounded by the
dispersions of disorder it leads to a homopolymerlike globuldransition and spinodal curves will remain trapped in a frozen
(I1. That phase is often referred to as a liquidlike globule inmisfolded state for a long time related to the barrier height.
the literature because the connectivity constraints there arEhis is in agreement with observation in numerous Monte
manifested only at short distances along the chain. Carlo simulationg22—2€ that there is poor kinetic accessi-

In the next series of figures we draw the behavior of thebility of the folded conformation for a generic class of se-
conformational entropjFig. 2(a)], the squared radius of gy- quences.

ration[Fig. 2(b)], and the glass order paramefEig. 2(c)] vs The situation deteriorates dramatically with increasing de-
the dispersion of disordex for three different values of the gree of polymerization according to Table I. Thus for suffi-
second virial coefficient. ciently long chains the spinodal curve cannot be reached un-

With increasingA the globule(ll) undergoes a freezing til the dispersion of disorder valudg,, which tends to
transition. As evident from Fig. 2 the frozen globl¥') has infinity exponentially quickly. This means that in our model,
a smaller entropy, a larger size, and a pronounced glass ordeaving all possible sequences of monomers characterized by
parameter. The freezing transition is continuous above tha Gaussian distribution, the kinetic accessibility is very poor
tricritical point and becomes first-order-like below it. In Fig. indeed. This is by no means surprising—the Gaussian distri-
1 we show the spinodal curve beyond which the homopolybution is too wide—as has been pointed out by 18] and,
merlike globule solution ceases to exist. Note that piise  earlier, by many otherf27—29. The way to make folding
continues to exist to the left of that curve. To find the freez-more efficient is to optimize the distribution by restricting
ing transition curve we have to compare values of the freacceptable sequences to a narrow subclass of sequences pos-
energy of the two solutions. It turns out that these valuesessing good folding properties.
differ very slightly by a contribution proportional th*. As An intriguing point however is that, although the kinetic
we have discussed in the Introduction we may not fully relyaccessibility is impeded for long polymers, the folded state
on the predictions of the method in such a case. Indeed, thsill remains the main free energy minimum for systems with
free energy of the frozen globule solution remains somewhaguite small dispersions of disordésee Table ). The more
lower than that of the normal globule for any smAll—a  nontrivial issue of whether this remains true in the thermo-
conclusion that cannot be considered as physically reasomlynamic limit (N—«) is answered in the affirmative in Sec.
able. Thus although we may rely on the result for the spin{V.
odal curve, we are unable to reliably determine the freezing
transitiqn curve at the current ord_er of. the weak disorder IV. LIMIT OF THE DENSE GLOBULE
expansior 10]. The resolution of this deficiency of the cur-
rent version of the method lies in the inclusion of higher- In this section we analyze the limit of the high-density
order corrections. To do so is in principle a substantial techglobule(i.e., our further considerations are valid only in the
nical task. Nevertheless, in Sec. IV we show that there is anegion ,<0), so thatp?3~ (|0,|/03)?*> k, and hence one
unambiguous way to resolve the problem, albeit phenomenanay neglect the spring term. We start by noting that for a
logically, within a simplified treatment discussed below.  homopolymer in this limit the equations possess only a con-

We have no such difficulty for the first-order-like folding stant ~ solution F,=F=const, and D,=D=2NF
transition. Here the free energies on the two branches differ (3)(203N/|0,])?® for the conformational modes|, m
significantly (in A% ordep and hence the folding transition #0. This is pretty much true for a normal liquidlike globule,
curve is depicted along with the spinodal in Fig. 1. Accord-since for sufficiently largem the functionD,, quickly satu-
ing to Fig. 2 the folded stat@/) is characterized by very low rates to a constant. The latter behavior is simply the math-
entropy, compact size, smaller glass order parameter, argmatical expression of the physical observation that the con-
optimal phase separation of hydrophobic and hydrophilimectivity contributions of polymer chains are screened in the
units (see Figs. 2 and 7 in Refl10]). We believe that the dense limit.
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For a random copolymer we shall seek an analogous con- Ly dy X 1—4x? de 4w de

) S . spEX n o€ AW o€

stant solution by requiring, in addition, that > 47 r2 | 2keT 3x ox 3 ow
Pqrp=@=CONst, @q4= ‘P const. (22 1 4)( da 4xw da

= —+ (33
2 2
It is now natural to introduce the rescaled variables, ar dx 3 w’

D N2 2N3%5 Gdw_ w (o AL-W) e 4y de
rzzm-, X:E, WZF (23 2 dr re B 3w ow 3 dy
4(1—w?) da 4yw da
The first definition obviously reflects the scaling of the com- P S Y ax’ (34)

pact globule size on the polymer lendth The second vari-
able could be also understood as a dimensionless degree 19t us emphasize that the entropy in the an{2®, al-
the phase separation. Indeed, from the definitlor N?¢,  though it coincides with the approximate expressibd) re-
for the case of the binary distribution and equal concentrastricted to constant variables in lower orders of expansion, is

tion, by using Eq(21), we obtain in fact exact within the limits of the Gaussian method. Thus
5 5 kinetic equationg32) and (33) can be exactly obtained by
1Ry(B)—Ry(A) 1 (24 differentiation of the free energy, EqR9) and(28).

It is encouraging that the time derivative of the free en-
ergy is nonpositive due to the boun@) and(25) and the

As for the third variable, in that case one can show similarlyelation,

X= 2R2(B)+R2(A) 2

that,
da  2v0a M Ja a5
RERZ bg; "3 M x @9
9y
wl=——=<1. (25) .
(R2)2 where we have used the vector notatiofs (r,x,w) and
9

M is a matrix with a positive definite determinant

We believe that Eq(23) may represent an important gener- 4
alization of scaling variables to the realm of random copoly- detM = — (1—4x?>—w?)>0. (36)
mers. Let us write out the specific energyentropys, and r

free energya, The validity of similar approximate treatments was dis-

A cussed by us in Ref30]. Direct comparison with the exact
. a=—, (26) results here confirms that the approximation is fairly good
N for sufficiently dense globule and largé¢ In Figs. 3 and 4
- we support this assertion by presenting a part of the phase
as well as the mobility per monoméy,, and the character- diagram and dependences of the variables, andy vs A.

istic time scaler, We observe here the same qualitative behavior as in the com-
plete scheme of Sec. lll. Really, for pha§&) the glass
¢ :£ - t 27) parametemw is very large and the sizeis larger there than
TN’ NZ3 for phaseg(ll). For phasdV) the phase separatignis larger,

while r andw are smaller than foflV). In this simplified
Then, the specific enerdit3) and entropy(12) reduce to the treatment it is trivial to take the thermodynamic limit
expressions, N—co. Simple numerical analysis of Eq§32)—(34), (29)

and(28) shows that the phase boundary of the folded state is

s - w s 82 weakly dependent oN and that this state remains the main
e=r 7 Uslx,wl—5 A x+ N +rol3) Uslxowl, free energy minimum for phas@/) even in the thermody-
28) namic Iimit_._ _ o N
As a criticism of the approximation for finite values of
3 > 5 N and « we note that the constant ansatz underestimates the
s=akg[4logr+ log(1=4x"—w?)]. @9 conformational entropy of the frozen globul®/). In Ref.
A 5, 2. o [10] we alluded to an observation that such a globule con-
Uolx,Wl=U[1+ 5 (x*+w)+--], (30)

sists of locally frozen clusters along the chain, and therefore
~ is sensitive to the spring term. As a result the frozen phase
Uslx,W]=Ug[ 1+ 3 (x*+w?) +---]. (3D (1v) is somewhat narrower in the approximate scheme com-

o ) ) pared to that of Fig. 1. For similar reasons we cannot really

The kinetic equations following from Eq¢10) and(11)  trust theN dependence of the folding spinodal line here and
take form, should use, instead, data from Table I. In other respects the
current approximate scheme presents an attractive and easily

{pdr kT 1de 1loa tractable set of only three equations for large-scale order pa-

= — (32 X . .
rameters that still correctly describe the essential conforma-
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20 — T T T T T T T
-25 | -
ol | T FIG. 3. Part of the phase diagram for the
dense globule in terms of the second virial coef-
sl 1 ficient u, (in unitskgT£%), and the dispersion of
disorderA (in units kgT£3), obtained from the
wl (IV) (V) 1 reduced self-consistent equation&32)—(34).
Solid lines represent first-order-like transitions,
sl 1 dashed lines represent continuous transitions, and
dotted lines represent “spinodal” curves. Here
ol 8 all parameters have the same values as in Fig. 1,
| but x=0.
5 0 B 20 2 % % w0
A —
tional transitions of the dense globule. It appears to be a 10| [14(2)y+ auy?]
reasonable generalization of simple Flory-type theories to(fr —€g)(A=0)~— == 1— <0.
random copolymers, and has the additional merit of describ- Uus 1+(3)y
ing the kinetics of conformational changes of the globule. (38

Despite certain improvements of the entro{®g) there

still remains the problem with determination of the freezingBy setting the discriminant of the resulting cubic equation to

transition curve. However, now we may attempt to address izero we obtainy,= — . For this choice of, it is possible,

phenomenologically along similar lines of thinking. Indeed, therefore, to cure the theory and determine the freezing tran-

let us improve the theory by adding the higher-order terms isition law and we find Agee~|U,| ™%, where a=0.96

Eq. (30, +0.04. We have derived this result phenomenologically, but
it is consistent with what one would expect for the freezing

37 tran_sitio_rrAfreez~,zflfv|f12|*1 obtained from the replica for-
malism in Refs[31] and[15]. Somewhat different expres-
sions have been derived for the freezing transition in the

wherey=x?+w? and a,=%. We must, strictly speaking, Symmetric random “charge(16] model[32,33.

evaluate the higher- order terms renormalizgndu; and

so on, but let us assume for the moment that they are less V. CONCLUSION

significant for the problem at hand. The coefficientcan be

found by the requirement that the folding transition curve We regard this work as the conclusion to our paper, Ref.

behaves ad —0 for (,— —. This is equivalent to requir- [10], in which we proposed a self-consistent method for the

ing that for sufficiently largéu,| we have model of a Gaussian random amphiphilic copolymer. There

Up=05(1+ agy+ agy?+--),

=
4

08 4

FIG. 4. Plots of the dimensionless quantities
r, w, and y vs the dispersion of disordeX (in
units kg T£%) for u,=—50 (in units kgT£3) and
other parameters as in Fig. 3. Points correspond
to the values of observables in the global mini-
04 ° 7 mum of the free energy, dashed lines correspond
to values in metastable minima; vertical dotted
lines correspond to the points of discontinuous
transitions.

06 - ]
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we discussed the kinetics of the folding process and here wEhe two-point equal-time correlation functioftb) may be
investigated the equilibrium diagram of states of the modelwritten in terms of the Fourier modes as

In many respects we found the method satisfactory in at-
tacking such a hard problem. Unfortunately, it has a defi- D= d9 E (A3)
ciency in describing the freezing transition curve. However, mm- 4 Tmme
it can be fixed by phenomenologically improving the expres-
sion for the internal energy and self-consistently determining
the coefficient of the higher-order correction. We believe that
a similar coarse-grained statistical description provides the
fundamental methodology that in future will permit further Analogously we deduce the three-point functions
progress in building more detailed models of proteins.

One of the principal conclusions of our consideration is Dmm,m,,E%((xm_xm,)(xm,,_xm,»zg d;fl!:n,m,,pq,
that the Gaussian distribution of sequences is too wide to q
possess any good folding properties in the average. Despite (A5)
the thermodynamic stability of the folded state for long (@ 1 (@ @ @

; e Linati T ; d*, =3’ +d_ ,—d"). (AB6)
chains, its kinetic accessibility is very impeded. Thus to mm'm’ — 2\84mm T Ymrm mn
achieve the folded gonformation a p°|ymer should ge_nerallyfn Eq. (13) we have used the following set of definitions:
overcome a potential barrier whose height grows with the
chain length. Selection and design of good folding se- Yo(Ky,Kp) =Dy Dy —DE s (A7)
guences, therefore, remains the main issue in the fundamen- v 12
tal prob_lem of protein folding. While we presently_ study yz(kllkz)zpﬁ sz,k2+D§ Pk1'k1+4Dﬁ k, Pk Ky kKo
rather simple models of random copolymers, we believe that ! 2 12
the direction we have laid out will have increasing relevance +2D Dy Py «. = 4Dy v.(Dr Pr. «k
for biological problems. Lo e e e T

2 m—m’
d@ =2 1—COSM . (A4)

, =
mm N

+ Dy, P, kyky) (A8)
ACKNOWLEDGMENTS
. . . . . Ya(ky ky)=P -P , A9
The authors acknowledge interesting discussions with a(ki ko) kiky Tkikg kiky (A9)
Professor A. Yu. Grosberg, Professor A. R. Khokhlov, Pro-
fessor P. Pincus, Professor Y. Rabin, and Professor B. Wi- O = df(‘“’)@gp, (A10)
dom. ap
We have also denoted
APPENDIX: SOME DEFINITIONS
For a ring polymer of lengtiN the Fourier transformation P=2 diPP Y, ., (A11)
is defined as p
N—-1 N—-1 — -
1 — A2 (SIp(s) = ()
Xm= 2 (0%, Xg== > f9%,,  (Al) Pig i, =A™ PISPIJ=Dy, Dy, (A12)
4=0 N m=o
i with the coefficients
@ 27igm
fm =X = - (A2) AP =3 (d? +dP —di ). (A13)
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